6366

帖子

4918

TA的资源

版主

41
 
光敏三极管的选用
在实际选用光敏三极管时,应注意按参数要求选择管型。如要求灵敏度高,可选用达林顿型光敏三极管;如要求响应时间快,对温度敏感性小,就不选用光敏三极管而选用光敏二极管。探测暗光一定要选择暗电流小的管子,同时可考虑有基极引出线的光敏三极管,通过偏置取得合适的工作点,提高光电流的放大系数。例如,探测10-3勒克斯的弱光,光敏三极管的暗电流必须小于0.1nA。
部分光电三极管型号及参数


型号
参数
允许功耗  mW
最高工作电压 UCEM/V
暗电流 ID/μA
光电流 mA
峰值响应波长 μm

测试条件

ICE=ID
UCE=UCEM
1000IX
UCE=10V

3DU11
70
≥10
≤0.3
0.5 ~ 1
0.88

3DU12
50
≥30

3DU13
100
≥50

3DU14
100
≥100
≤0.2
0.5 ~ 1

3DU21
30
≥10
≤0.3
1 ~ 2

3DU22
50
≥30

3DU23
100
≥50

3DU31
70
≥10
≤0.3
≥2

3DU32
50
≥30

3DU33
100
≥50

3DU 51
30
≥10
≤0.2
≥0.5

部分国产光敏三极管参数
此帖出自单片机论坛
 

回复

6366

帖子

4918

TA的资源

版主

42
 
功率MOSFET管的选用注意事项
功率MOSFET具有导通电阻低、负载电流大的优点,因而非常适合用作开关电源(switch-mode power supplies,SMPS)的整流组件,不过,在选用MOSFET时有一些注意事项。
  功率MOSFET和双极型晶体管不同,它的栅极电容比较大,在导通之前要先对该电容充电,当电容电压超过阈值电压(VGS-TH)时MOSFET才开始导通。因此,栅极驱动器的负载能力必须足够大,以保证在系统要求的时间内完成对等效栅极电容(CEI)的充电。
  在计算栅极驱动电流时,最常犯的一个错误就是将MOSFET的输入电容(CISS)和CEI混为一谈,于是会使用下面这个公式去计算峰值栅极电流。
  I = C(dv/dt)
  实际上,CEI的值比CISS高很多,必须要根据MOSFET生产商提供的栅极电荷(QG)指标计算。
  QG是MOSFET栅极电容的一部分,计算公式如下:
  QG = QGS + QGD + QOD
  其中:
  QG--总的栅极电荷
  QGS--栅极-源极电荷
  QGD--栅极-漏极电荷(Miller)
  QOD--Miller电容充满后的过充电荷
  典型的MOSFET曲线如图1所示,很多MOSFET厂商都提供这种曲线。可以看到,为了保证MOSFET导通,用来对CGS充电的VGS要比额定值高一些,而且CGS也要比VTH高。栅极电荷除以VGS等于CEI,栅极电荷除以导通时间等于所需的驱动电流(在规定的时间内导通)。
  用公式表示如下:
  QG = (CEI)(VGS)
  IG = QG/t导通
  其中:
  ● QG 总栅极电荷,定义同上。
  ● CEI 等效栅极电容
  ● VGS 删-源极间电压
  ● IG 使MOSFET在规定时间内导通所需栅极驱动电流


图1
此帖出自单片机论坛
 
 

回复

6366

帖子

4918

TA的资源

版主

43
 
运算放大器的选择与应用
针对集成运算放大器性能特点,分析了选择策略;就应用广泛的低噪声集成运放、精密集成运放、视频集成运放等专用型集成运算放大器及其典型应用技术进行了讨论,给出了相应的典型应用实例。
  关键词:集成运算放大器;选择策略;应用技术
1运放的选择策略
  (1)设计目标的综合考虑
  设计者必须综合考虑设计目标的信号电平,闭环增益,要求精度,所需带宽,电路阻抗,环境条件及其他因素,并把设计要求的性能转换成运放的参数,建立各个参数的取值以及它们随温度、时间、电流电压等变化的范围。
  (2)深刻理解电路手册中特性指标的意义
  不同的制造商可能给出不同的特性指标,这些指标可能是通过不同的测量技术获得的,这就给运放的选择带来了困难。为避免这些困难,设计者必须深刻理解电路手册中特性指标的意义,同时必须了解这些参数是如何测得的,然后把这些特性指标转换成对设计要求有意义的参数。
  (3)选择具有最优性能价格比的运放
  设计者必须把设计目标的性能、所选择器件的性能指标与价格联系起来,以最低的价格获得符合设计目标提出的物理、电气和环境要求。
  不同类型运放组成近百种运放系列,其中一部分是通用的,称为通用型运放:另一部分为特殊应用提供优化特性,称为专用型运放。通用型运放的各项性能指标都比一般的分立元件直接耦合放大电路有所改善,大致能够满足中等精度的要求,一般情况下无须调零即可使用。专用型运放为了适应特殊应用场合而具有优化特性。根据专用型运算放大器的性能指标,运算放大器可分为:低噪声运放、精密运放、高速运放、低偏置电流运放、低漂移运放、低功耗/微功耗运放等。现在说明几种不同类型的专用型运放及其应用技术。
2.1低噪声运放及其典型应用技术
  以AD797为例。它是低噪声、场效应管输入(FET)运算放大器,最大输入电压噪声最大值50nVpp。
  AD797组成的低噪声电荷放大器见图1。此时放大作用取决于运放输入端电荷的保持因素,即要求电容CS上的电荷能被传送到电容CF,形成输出电压ΔQ/CF。在放大器输出端呈现的电压噪声等于放大器输入电压噪声乘以电路的噪声增益(1+(CS/CF))。

2.2精密运放及其典型应用技术
  以AD517为例。它是一种单片高精密运算放大器,具有激光调整的低失调电压、低漂移等精密特性,具有内部补偿和短路保护,能防止自锁,具有超低偏置电流电路,偏置电流最大值1nA。管壳单独引出(8脚),使得管壳能单独接到和输入端等电位的点上,从而使管壳上杂散漏电减至最小;能屏蔽输入电路,使其不受外部噪声和电源瞬变的影响。
  AD517组成微电流电压转换器的应用技术如图2所示,该电路具有较高的灵敏度,缺点是失调电压漂移和噪声等输入误差会被增益放大,影响仪器性能,但AD517的精密特性可以弥补这个缺憾。由于AD517具有超低输入电流的性能,必须采用防护技术,实现方法是在包裹高阻抗信号线的绝缘材料外部加一个低阻抗自举电位,这个自举电位与高阻抗线的电位保持相等,使绝缘体两侧没有压降,也就没有漏电。防护体可作为屏蔽层减少噪声拾取,并具有减少输入线有效电容的附加功能。AD517的管壳单独引到管脚8,使管壳也能接到防护电位上,从而真正消除了封装绝缘材料上的电位漏电路径,为敏感电路提供噪声屏蔽。该电路给出了典型的反相防护连接图,如果管脚8不接防护端,则应将它接地或接电源以减少噪声。在许多仪表测量的场合,会遇到从高电压源测量微弱电流的问题,在该类应用中,很有必要对输入端采取一定的保护。AD517具有不同于其他器件的地方,故障形式是由于电流过大导致器件过热而不是电压击穿,只要在受影响的输入端串联一个电阻即可解决问题。实际应用中,所设计仪器仪表的电路板安装完毕后,通常要用高纯度酒精彻底清洗,然后用消除电离的水漂清,再用氮收干,这样可保持漏电最小,性能最佳。



  以AD829为例。它是采用互补双极型(CB)制造工艺的单片视频运算放大器,具有优异的直流特性,最大输入失调电压1mV,输入失调电压漂移0.3μV/℃,
 
常规补偿;具有优良的建立时间特性(至0.1%为90ns):反相端驱动50Ω或75Ω同轴线时,AD829在3.58MHz和4.43MHz的相位不均匀性为0.04°,增益不均匀性为0.02%。
  视频放大的典型应用如图3所示,此为同相输入,可以通过改变接到管脚2的两个电阻RF和R1阻值的大小来调节整个电路的增益 也可接成反相输入。管脚7接正电源,管脚4接负电源,应注意采用合适的电源退耦,最好采用多个电容并联的形式(如1μF、0.1μF、0.01μF并联组合),使用±5V电源时,能获得最低的差分增益和差分相位误差,取得优良的视频性能。当驱动多根电缆时,须在电缆的输出之间加入高频隔离。放大器输出端串入75Ω电阻保证运放输出与传输线的匹配,传输线末端并入75Ω电阻保证负载之间匹配,在增益G=6dB时,差分增益误差0.05%,相位增益误差0.01°,视频性能优良。注意,为减小信号源内阻与放大器输入电容(约3pF)对电路交流特性的影响,应使信号源内阻小于1kΩ;有时需要在反馈电阻RF两端并联一个小电容(3pF)加以补偿,若采用标准NTSC或PAL或SECAM制式,且电路增益小于10dB和反馈电阻RF值小于500Ω,则补偿电容可以不要;通常情况下,反馈电阻RF值小于1kΩ以有效减小放大器寄生电容对高频特性的影响。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

44
 
家用电源熔断丝(保险丝)选用技巧
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

45
 
5号电池的种类及选择
5号电池有普通电池,碱性电池及可充电池.

此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

46
 
压敏电阻器的应用原理及选用
压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对IC及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。使用时只需将压敏电阻器并接于被保护的IC或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC或电器设备;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作。
压敏电阻的选用
选用压敏电阻器前,应先了解以下相关技术参数:标称电压是指在规定的温度和直流电流下,压敏电阻器两端的电压值。漏电流是指在25℃条件下,当施加最大连续直流电压时,压敏电阻器中流过的电流值。等级电压是指压敏电阻中通过8/20等级电流脉冲时在其两端呈现的电压峰值。通流量是表示施加规定的脉冲电流(8/20μs)波形时的峰值电流。浪涌环境参数包括最大浪涌电流Ipm(或最大浪涌电压Vpm和浪涌源阻抗Zo)、浪涌脉冲宽度Tt、相邻两次浪涌的最小时间间隔Tm以及在压敏电阻器的预定工作寿命期内,浪涌脉冲的总次数N等。
标称电压选取
一般地说,压敏电阻器常常与被保护器件或装置并联使用,在正常情况下,压敏电阻器两端的直流或交流电压应低于标称电压,即使在电源波动情况最坏时,也不应高于额定值中选择的最大连续工作电压,该最大连续工作电压值所对应的标称电压值即为选用值。对于过压保护方面的应用,压敏电压值应大于实际电路的电压值,一般应使用下式进行选择:
VmA=av/bc
式中:a为电路电压波动系数,一般取1.2;v为电路直流工作电压(交流时为有效值);b为压敏电压误差,一般取0.85;c为元件的老化系数,一般取0.9;
这样计算得到的VmA实际数值是直流工作电压的1.5倍,在交流状态下还要考虑峰值,因此计算结果应扩大1.414倍。另外,选用时还必须注意:
(1) 必须保证在电压波动最大时,连续工作电压也不会超过最大允许值,否则将缩短压敏电阻的使用寿命;
(2) 在电源线与大地间使用压敏电阻时,有时由于接地不良而使线与地之间电压上升,所以通常采用比线与线间使用场合更高标称电压的压敏电阻器。
压敏电阻所吸收的浪涌电流应小于产品的最大通流量。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

47
 
磁芯的选型方法
磁芯的选型要根据您的要求来,根据您的功率大小计算 AP值,再看您的应用,如EMI要求,环境温度要求,价格方面等去选择磁芯的TYPE.如EE型的价格方面,加工工艺方面有优势,但体积,效率方面,EMI方面就差些.ER,ETD 型的,由于中柱是圆形的,横截面积在同样的外形尺寸一样的情况下会大些——同时由于中柱是圆形的可以在一定程度上减小DCR.而PQ,RM等则有更大的横截面积和散热面积,同时还有磁屏蔽——但出线位小,制造工艺上可能会比较困难,特别是作多路输出时!还有它们的价格也比较贵.
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

48
 
如何选择高效MOSFET管
前不久,能源之星发布了2.0版外部电源能效规范。新规范大幅提高了工作频率要求,同时进一步降低待机功耗要求。例如,为了满足新规范,2.5W(5V,0.5A)外部电源的最低效率必须达到72.3%,新规范要求空载功耗应低于300mW,这些都比目前使用的规范有了大幅提高。不仅是外部电源,很多手持式产品及家电产品,同样面临着低功耗的考验。以手机为例,随着智能手机的功能越来越多,低功耗设计已经成为一个越来越迫切的问题。面对这种降低功耗、提高能效的趋势要求,设计工程师必须从源头开始,为自己的设计尽可能地选择节能、高效的器件。而高能效的功率半导体可以帮助工程师缩短相关产品的开发时程,并能轻易达到系统的规格需求。MOSFET作为功率半导体的一种,在很多系统中都有应用,如:便携设备、消费类电源适配器、计算机主板、LCD显示器、网络通信、工业控制、汽车电子以及照明等领域。尤其是在DC/DC转换器中,功率MOSFET的选择将对电源的效率有关键的影响。下面,将介绍几款应用在不同领域的MOSFET,它们无论在导通电阻还是开关速度上,都具有出色的表现。
MOSFET的几个关键参数
MOSFET是英文Metal Oxide Semicoductor Field Effect Transistor的缩写,译成中文是“金属氧化物半导体场效应管”。它是由金属、氧化物(SiO2或SiN)及半导体三种材料制成的器件。按沟道半导体材料的不同,MOSFET分为N沟道和P沟道两种。所谓功率MOSFET(Power MOSFET)是指它能输出较大的工作电流(几安到几十安),用于功率输出级的器件。
MOSFET的参数中,主要考虑的有三大参数:最大耐压、最大电流能力及导通电阻。导通电阻(RDSON)是一个关键的参数,导通电阻越小,则传导损耗越小。但是,只考虑导通电阻还不够,因为,功率MOSFET主要的损耗来源有三个:(1)导通电阻造成导通损耗;(2)闸极电荷造成驱动电路上的损耗及切换损耗;(3)输出电容在截止/导通的过程中造成功率MOSFET的储能/耗能。因此,选择一款节能、高效的MOSFET,需要考虑多种原因及应用领域。
在业界,MOSFET有一个普适的性能测量基准,即品质因数(FOM),品质因数可以用导通电阻(RDS(ON))和栅极电荷(Qg)的乘积来表示,即FOM = RDS(ON)×Qg。RDS(ON)直接关系到传导损耗,Qg直接关系到开关损耗,因此,FOM值越低,器件性能就越好。
几款高效、低损耗MOSFET
英飞凌公司的SuperS08无铅封装的40V、60V和80V OptiMOS 3 N沟道MOSFET系列,具有极低的导通电阻。其40V系列具备最低1.8mΩ的导通电阻,60V系列具备最低2.8mΩ的导通电阻,80V系列具备最低4.7mΩ的导通电阻。这些器件的FOM与采用标准TO封装的同类产品相比高出25%,能够更快速实现开关,同时最大程度降低开关损耗和栅极驱动损耗,提高功率密度,降低驱动器散热量。SuperSO8封装寄生电感不到0.5nH,比TO-220封装的5~10nH电感低很多,这进一步提升了器件整体效率,最大程度上减少在开关条件下的振荡现象。OptiMOS 3 40V、60V和80V产品适用于需要高效率和功率密度的功率转换和电源管理应用,包括众多产品的SMPS(开关模式电源)、DC/DC转换器和直流电机驱动器等。

这些产品包括计算机、家用电器、小型电动车、工业自动化系统、电信设备和电动工具、电动剪草机和风扇等消费类电子设备。
意法半导体(ST)在MOSFET产品上也有自己独到的技术,其STripFET技术利用非常高的等效单元密度和更小的单元特征尺寸来实现极低的导通电阻和开关损耗,STripFET V是最新一代的STripFET技术。基于该技术的两款MOSFET STD60N3LH5和STD85N3LH5,拥有极低的导通损耗和开关损耗。在一个典型的稳压模块内,两种损耗的减少可达3W。该产品实现了优异的品质因数FOM。两款产品都是30V(BVDSS)器件。STD60N3LH5栅极电荷量(Qg)为8.8nC,在10V电压时,导通电阻为7.2mΩ,是非隔离DC/DC降压转换器中控制型场效应晶体管的理想选择。STD85N3LH5在10V电压时,导通电阻为4.2mΩ,栅电荷量为14nC,是同步场效应晶体管的极佳选择。两款产品都采用DPAK和IPAK封装,应用领域包括笔记本电脑、服务器、电信设备和网络系统。
威世(Vishay Intertechnology)的20V N沟道器件SiR440DP,扩展了其第三代TrenchFET功率MOSFET系列。该器件采用PowerPAK SO-8封装,在4.5V栅极驱动时最大导通电阻为2.0mΩ,在10V栅极驱动时最大导通电阻为1.55mΩ。在DC/DC应用中,该MOSFET具有极好的品质因数,在 4.5V时为87。SiR440DP在同步降压转换器以及二级同步整流及OR-ing应用中用做低端MOSFET。其低传导及切换损耗将确保稳压器模块(VRM)、服务器及使用负载点(POL)功率转换的诸多系统实现功效更高且更节省空间的设计。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

49
 
对数放大器的选型
       我们知道基本对数放大器具有优良的直流精度和非常宽的动态范围,适用于光纤等直流或低频信号的功率测量。这样的模拟集成电路有AD8304、AD8305。
      基带对数放大器交流特性好,能响应瞬时变化的输入信号,但动态范围较小,适用于高速数据I/O和蜂窝基站等场合的应用。相应的器件有AD8364。
       解调对数放大器动态范围大,频率响应宽。适用于系统的脉冲信号的中频放大、频谱分析、天线功率测量、功率指示等等。此类器件有AD640、641、8307、8309、8310。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

50
 
如何挑选适当的浪涌保护器
购买浪涌保护器时需要非常小心,因为市场上充斥着大量几乎不起任何作用的产品。研究特定的型号是确保买到合适产品的最佳方法,不过仔细留心几个质量标志,也能很好地了解产品的性能级别。
首先,查看价格。从常理来讲,不要对那些售价低于10美元的浪涌保护器抱有太多期望。这些装置通常采用简单、低廉的MOV,容量相当有限,在出现较大浪涌或尖峰时将不能保护您的系统。
当然,价格高并不能保证质量好。在美国,您若要了解设备的容量,需要查看其美国安全检测实验室 (UL)标称值。UL是一个独立的非赢利公司,它专门为电气和电子产品提供安全检测。如果保护器没有UL标志,它可能就是一个垃圾产品,甚至根本没有任何保护元件。如果它使用的是MOV,这些MOV的质量可能会非常低劣。廉价的MOV很容易过热,进而导致整个浪涌保护器起火。实际上,这种事经常发生!
当然,许多具有UL标志的产品也是质量低劣的产品,但最起码您可以确保它们具有一定的保护能力,可以勉强符合安全标准。您要确保产品标示为瞬变电压浪涌抑制器。这表示它符合UL 1449标准,即浪涌抑制器的UL最低性能标准。许多带有UL标志的电源板其实根本就没有浪涌保护元件,UL的标志只表示它们可以用作延长线缆。

在带有UL标志的浪涌保护器上,可以发现几组标称值。如下所示:
箝位电压——这表示将导致MOV接通地线的电压值。箝位电压越低,表示保护性能越好。此UL标称值有三个保护水平——330伏、400伏和500伏。通常,箝位电压超过400伏就太高了。

能量吸收/耗散能力——此标称值表示浪涌保护器在烧毁前能够吸收多少能量,单位为焦耳。其数值越高,保护性能就越好。您购买的保护器的这一标称值至少要在200至400焦耳之间。若要获得更好的保护性能,应该寻找此标称值在600焦耳以上的产品。

响应时间——浪涌保护器不会立刻断开;它们对电涌做出响应会有略微的延迟。响应时间越长,表示计算机(或其他设备)将遭受浪涌的持续时间越长。请购买响应时间低于一毫微秒的浪涌保护器。
此外,您还应该购买具有指示灯的保护器,以便判断保护元件是否在起作用。在遭受多次电涌之后,所有MOV都将会烧毁,但是保护器仍然会作为一个电源板而工作。没有电源指示灯,就无法得知保护器是否仍然在正常工作。


这是一款贝尔金SurgeMaster II中型浪涌保护器,上面带有电话线接口




较好的浪涌保护器可能会提供某种性能保证。如果您要购买比较昂贵的设备,请在计算机上寻找带有质量保证的保护器。如果该设备未能保护计算机免受电涌的损害,制造商肯定会为您更换一台计算机。当然,这也不能完全保险——仍然有可能丢失硬盘驱动器上的所有数据,这可能会让您损失惨重——但另一方面,这也是制造商对自己产品有信心的良好表现。
没有百分之百有效的浪涌保护器,即使是最高端的线路设备也可能出现某种严重问题。实际上,电子学专家对消除电涌的最佳方法也存在一些分歧,不同的制造商还在相互诟病各自技术存在的固有缺陷。如果您有兴趣了解有关问题的更多信息,并探讨浪涌保护技术的固有缺陷,请查看下一页的链接。令人惊讶的是,浪涌保护器是一项极富争议的技术,人们在网上引发了一轮又一轮的激烈争论。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

51
 
集成稳压器的选择及应用注意事项

集成稳压器的选择
在选择集成稳压器时应该兼顾性能、使用和价格几个方面,目前市场上的集成稳压器有三端固定输出电压式、三端可调输出电压式、多端可调输出电压式和开关式4种类型。
在要求输出电压是固定的标准系列值,且技术性能要求不是很高的情况下,可选择三端固定输出电压式集成稳压器。比如选择CW7800系列可获得正输出电压,选择CW7900系列可获得负输出电压。由于三端固定输出电压式集成稳压器使用简单,不需要做任何调整,价格较低,应用范围非常广泛。
在要求稳压精度较高且输出电压能在一定范围内调节时,可选用三端可调输出电压式集成稳压器,这种稳压器也有正和负输出电压以及输出电流大小之分,选用时应注意各系列集成稳压器的电参数特性。
多端可调输出电压式集成稳压器,例如五端型可调集成稳压器,因它有特殊的限流功能,可利用它组成具有控制功能的稳压源和稳流源,它是一种性能较高而价格又较便宜的集成稳压器。
单片开关式集成稳压器的一个重要优点是具有较高的电源利用率,目前国内生产的CW1524、CW2524、CW3524系列是集成脉宽调制型,用它可以装成开关型稳压电源。
使用集成稳压器的注意事项
   (1)不要接错引脚线,对于多端稳压器,接错引线会造成永久性损坏,对于三端稳压器输入和输出接反,当两端电压差超过7伏时,有可能使稳压器损坏。
  (2)输入电压不能过低,输入电压Ui不能低于输出电压Uo和调整管的最小压差(Ui—Uo)min以及输入端交流分量峰值电压Up三者之和,即Ui>Uo+(Ui-Uo)min+Up,否则稳压器的性能将降低,纹波增大。
  (3)输入电压也不可过高,不要超过Uimax,防止集成稳压器损坏。
  (4)功耗不要超过额定值,对于多端可调稳压器,若输出电压调到较低电压时,防止调整管上压降过大而超过额定功耗,为此在输出低电压时最好同时降低输入电压。
  (5)防止瞬时过电压,对于三端稳压器,如果瞬时过电压超过输入电压的最大值且具有足够的能量时,将会损坏稳压器。当输入端离整流滤波电容较远时,可在输入端与公共端之间加1个电容器(如0.33μF)。
  (6)防止输入端短路,如果输出电容CO较大,又有一定的输出电压,一旦输入端短路,由于输出端的电容存储电荷较多,将通过调整管泄放,有可能损坏调整管,所以要在输入与输出端之间连接1个保护二极管,正极连输出端,负极连输入端。
  (7)防止负载短路,尤其对未加保护措施的稳压器而言更要注意。
  (8)大电流稳压器要注意缩短连接线和安装足够的散热器。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

52
 
开关电源的输出滤波电感(扼流圈)选择问题
开关电源的输出滤波电感,也称为平滑扼流圈。它的作用,主要是将整流后的电流进行展平,以得到较稳定的输出和平滑的波形。为了取得更好的效果,是否可以取较大的电感值呢?答案并非如此,取值过大时,反而会引起其它方面的不良影响。
    在参考文献[1]一书中,作者在他试制一台500W半桥式开关电源时,就遇到了这样的情况。
    由于输出电流较大,因此采用分流的办法,用了两只外径为φ40mm的MPP磁粉芯。(文献[1]第161页)
    开始绕了24匝,即N=24,L=58μH。当Io=15~30A(平均每只IL=7.5~15A)时,高压开关脉冲波形发生严重的自激抖动,高频振荡明显加剧,强烈的尖刺干扰从副边反射到原边电路,甚至在电网输入线和+20V辅助电源线上,都叠加了幅度高达5~6V的高频噪声干扰,并且在控制模块SG3525A的两输出端和高压开关管中点上脉冲都明显可见。
    接着将匝数减少10匝,即N=14,L=20.6μH。Io=20~25A(平均每只IL=10~12.5A),开始稳定了。Io=30A(平均每只IL=15A)时,高压脉冲波形后沿仍有抖动。
    最后,匝数减少到只有8~10匝,L=10.1μH。Io=30A(平均每只IL=15A)时也能稳定工作了。
    现在,对以上情况作一下简要分析。
    根据作者在该书后面(文献[1]第234页)关于输出滤波电感的计算公式
    L=(Vi-Vo)ton/(2Iomin)    (1)
    而Iomin一般取Io的(5~10)%,单只磁芯IL=15A的10%为1.5A。
    开关频率fsw=80kHz。即T=12.5μs。Vi=18V,Vo=15V。
    ton=(Vo/Vi)×(T/2)    (2)
    ton=(15/18)×(12.5/2)=5.2μs
    L=(18-15)×5.2/(2×1.5)=5.2μH。
    这就告诉我们,电感量的最小值为5.2μH,或者说临界电感值为5.2μH。下面根据伏安(微)秒平衡的原理,来分析上述情况。
    磁能量W为
    W=(1/2)LI2(VAs)or(VAμs)(3)
    电能功率P为
    P=(1/2)LI2fsw(VA)    (4)
    公式转换后为
    P/fsw=(1/2)LI2

    将P用VI替代,1/fsw用T替代,得以下关系式
       VIT=LI2/2      (5)
    对照图1可知,V=Vi=18V,I=IL=15A。就有


图1  电原理图

    VIT=18×15×12.5=270×12.5=3375VAμs。
    当N=24,Lo=58μH,15A时实际电感值取60%,L15=58×0.6=35μH。
    当N=14,Lo=20.6μH,15A时实际电感值取80%,L15=20.6×0.8=16.5μH。
    当N=10,Lo=10.6μH,15A时实际电感值取95%,L15=10.6×0.95=10.1μH。
    分别得到各组磁能为
    WN=24=0.5×35×152=3937.5VAμs(6)
    WN=14=0.5×16.5×152=1856.25VAμs(7)
    WN=10=0.5×10.1×152=1136.25VAμs(8)
    前面计算的磁能为3375VAμs,实际上在占空比等于0.5时,还要折半就只有1687.5VAμs了。
    显然,这点磁能——1687.5VAμs无法满足式(6)和(7)这两种情况。只有在式(8)时磁电能完全满足要求,因此才能稳定地工作。
    比较理想的情况是,电感值能随着输出电流变化而变化。起始电感值,要根据磁芯饱和曲线来确定为临界电感值的1.5~3倍,不宜过大。以上分析,是否对头,敬请专家同仁指正。

此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

53
 
电流互感变压器主要参数及选型方法

长期以来,电流互感变压器作为仪器设备中的一种标准器件一直用来测量精密电流。即使在恶劣的环境和高温条件下,这种器件也非常精确,使用方便可靠。在诸如开关电源、马达电流负载检测、照明及仪器等应用中,电流互感变压器一般作为控制、电路保护和监测器件来使用。随着电流互感变压器现货的日益增多,如何选择一款合适的电流互感变压器需要考虑多方面的因素,本文介绍一种简单的选择方法,这种方法在很多应用中对于选择合适的高性价比器件非常有帮助。虽然现货器件价格便宜,立等可取,但是在使用上有一些功能限制,某些应用可能需要特殊的产品,甚至需要完全定制。

  电流互感变压器的选择要考虑多种因素,例如尺寸大小、频率、功能和电流范围等。

  输入电流

  首先,电流互感变压器的选择必须明确并验证多项指标,例如尺寸大小、频率、功能和采样电流的范围。它的精度和效率实际上取决于这些参数指标。除了可能会在电流互感变压器精度上进行折中之外,如果电流互感变压器使用时的电流超过了制造商规定的额定电流规范,那么其工作温度就会不断上升且无法控制,从而导致电路失效。

  另外,如果某种电流互感变压器的额定值比其“采样电流”高出很多,那么这种器件的尺寸不可避免地将会很大,对于其应用来说就显得太昂贵了。一般而言,所选的电流互感变压器的额定值约高于其“采样电流”最大期望值的30%就是一种明智的选择。

  匝数比

  常见的电流互感变压器的匝数比范围从1:10到1:1000不等。匝数比(r=Nsec/Npri)越高,电流测量的分辨率就越高。

  但是,值得注意的是,过高的匝数比将会导致分布电容和泄漏电感的增大,从而降低电流互感变压器的精度和高频下的工作性能(由于自谐振引起的)。然而,如果匝数比过低(低感应系数),那么输出信号可能会出现歪曲或者“下降”(单级输入信号必定发生歪斜),从而引起控制电路不稳定,测量结果不准确。

  感应系数和激励电流

  电流互感变压器的次级感应系数决定了输出信号的保真度。感应系数的值与激励电流成反比,激励电流俗称为“感应电流”。

为了确保电流互感变压器的最大容错性能,激励电流应该比采样电流的幅值小若干倍。对于开关电源等大部分应用来说,取采样电流的10%作为激励电流的最大值是比较理想的。例如,如果某个电路在100kHz下对于1~20A的采样电流必须保证最大10%的损耗,那么激励电流的最大值必须设置为100mA(即最小采样电流值的10%)。

1A的采样电流将产生10%的误差,20A的采样电流将产生0.5%的误差。如果制造商提供的数据手册中没有标明激励电流,那么可以通过以下公式计算出来:

e=CLdI/dt

|dI/dt|=e/L

其中e是器件输出电压(单位是V),L是感应系数(单位是H),|dI/dt|是激励电流与时间的比值(单位是A/s)。

输出电压和负载电阻

输出电压(Vo)应该设置得尽可能低,以减少介入损耗。假设某个电路的最优次级输出电压是0.5V,输出电流为20A,那么匝数比为1:100的电流互感变压器就会产生约200mA的次级电流。负载电阻应该为:Ro=Vo/Is=0.5/0.2=2.5Ω。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

54
 
超级电容与可充电池的比较
超级电容与电池比较,有如下特性:
a.超低串联等效电阻(LOW ESR),功率密度(Power Density)是锂离子电池的数十倍以上,适合大电流放电,(一枚4.7F电容能释放瞬间电流18A以上)。

b. 超长寿命,充放电大于50万次,是Li-Ion电池的500倍,是Ni-MH和Ni-Cd电池的1000倍,如果对超级电容每天充放电20次,连续使用可达68年。

c. 可以大电流充电,充放电时间短,10秒内达到额定容量的95%, 对充电电路要求简单,无记忆效应。

d. 免维护,可密封。

e.温度范围宽-40℃~+70℃,一般电池是-20℃~60℃

f. 充放电线路简单,无需充电电池那样的充电电路,真正免维护;

g. 电压选择范围类型广:2.7v---12.0v
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

55
 
如何选用湿度传感器
一、湿度传感器的分类及感湿特点
    湿度传感器,分为电阻式和电容式两种,产品的基本形式都为在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。湿度传感器具有如下特点:
精度和长期稳定性
湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。
湿度传感器的温度系数
湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般在0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下 ,其温度系数又有差别。温漂非线性,这需要在电路上加温度补偿式。采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。湿度传感器工作的温度范围也是重要参数。多数湿敏元件难以在40℃以上正常工作。
湿度传感器的供电
金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。必须是交流电供电。
互换性
目前,湿度传感器普遍存在着互换性差的现象,同一型号的传感器不能互换,严重影响了使用效果,给维修、调试增加了困难,有些厂家在这方面作出了种种努力,(但互换性仍很差)取得了较好效果。
湿度校正
校正湿度要比校正温度困难得多。温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件非常严格,一般情况,(最好在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简单的饱和盐溶液检定法,并测量其温度。
二、对湿度传感器性能作初步判断的几种方法
    在湿度传感器实际标定困难的情况下,可以通过一些简便的方法进行湿度传感器性能判断与检查。
一致性判定,同一类型,同一厂家的湿度传感器产品最好一次购买两支以上,越多越说明问题,放在一起通电比较检测输出值,在相对稳定的条件下,观察测试的一致性。若进一步检测,可在24h内间隔一段时间记录,一天内一般都有高、中、低3种湿度和温度情况,可以较全面地观察产品的一致性和稳定性,包括温度补偿特性。
用嘴呵气或利用其它加湿手段对传感器加湿,观察其灵敏度、重复性、升湿脱湿性能,以及分辨率,产品的最高量程等。
对产品作开盒和关盒两种情况的测试。比较是否一致,观察其热效应情况。
对产品在高温状态和低温状态(根据说明书标准)进行测试,并恢复到正常状态下检测和实验前的记录作比较,考查产品的温度适应性,并观察产品的一致性情况。
    产品的性能最终要依据质检部门正规完备的检测手段。利用饱和盐溶液作标定,也可使用名牌产品作比对检测,产品还应进行长期使用过程中的长期标定才能较全面地判断湿度传感器的质量。
三、对市场上湿度传感器产品的几点分析
    国内市场上出现了不少国内外湿度传感器产品,电容式湿敏元件较为多见,感湿材料种类主要为高分子聚合物,氯化锂和金属氧化物。
    电容式湿敏元件的优点在于响应速度快、体积小、线性度好、较稳定,国外有些产品还具备高温工作性能。但是达到上述性能的产品多为国外名牌,价格都较昂贵。市场上出售的一些电容式湿敏元件低价产品,往往达不到上述水平,线性度、一致性和重复性都不甚理想,30%RH以下,80%RH以上感湿段变形严重。有些产品采用单片机补偿修正,使湿度出现"阶跃"性的跳跃,使精度降低,出现一致性差、线性差的缺点。无论高档次或低档次的电容式湿敏元件,长期稳定性都不理想,多数长期使用漂移严重,湿敏电容容值变化为pF级,1%RH的变化不足0.5pF,容值的漂移改变往往引起几十RH%的误差,大多数电容式湿敏元件不具备40℃以上温度下工作的性能,往往失效和损坏。
    电容式湿敏元件抗腐蚀能力也较欠缺,往往对环境的洁净度要求较高,有的产品还存在光照失效、静电失效等现象,金属氧化物为陶瓷湿敏电阻,具有湿敏电容相同的优点,但尘埃环境下,陶瓷细孔被封堵元件就会失效,往往采用通电除尘的方法来处理,但效果不够理想,且在易燃易爆环境下不能使用,氧化铝感湿材料无法克服其表面结构"天然老化"的弱点,阻抗不稳定,金属氧物陶瓷湿敏电阻也同样存在长期稳定性差的弱点。
    氯化锂湿敏电阻,具有最突出的优点是长期稳定性极强,因此通过严格的工艺制作,制成的仪表和传感器产品可以达到较高的精度,稳定性强是产品具备良好的线性度、精密度及一致性,是长期使用寿命的可靠保证。氯化锂湿敏元件的长期稳定性其它感湿材料尚无法取代。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

56
 
如何选择射频滤波器
虽然射频滤波器品种很多,但是每一种型号在设计时都考虑了具体使用场合的要求,使设计师能够在性能、体积、成本等方面获得满意的结果。选择射频滤波器需要考虑的因素有:
    截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。
    插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。
    额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。
    额定电流:滤波器在正常工作时能够长时间流过的电流值,额定电流由滤波器的引线直径决定,线径越大,额定电流越大。对于滤波器组件,额定电流还与电感线圈的饱和特性有关,当电流超过额定电流时,滤波器的性能会下降。
    工作温度范围:滤波器件能保证预定性能和正常工作时所处的环境温度, 本样本中的滤波器件除了特别标出的以外,工作温度范围为有 -55 - +125 C。
    滤波器的体积:滤波器的体积与滤波器的额定工作电压、工作电流、截止频率、插入损耗以及制造工艺有关。电气性能基本相同的滤波器,由于不同的制造工艺而导致不同的体积,电气性能接近时,体积较大的滤波器价格较低(适合安装空间较大的场合)。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

57
 
玻璃管熔断器选型
玻璃管熔断器广泛应用于家用电器及电子仪器仪表中。熔断器有多种规格参数,应根据被保护电器的负载特性,选用相应的熔断器才能有效保护。若熔断器被熔断,应用相同规格参数的熔断器更换,否则,若所选择的熔断器额定电流相对于电器负载电流偏大,就起不到保护作用;偏小则不能保证电器正常使用,可能一通电即熔断。所谓熔断器的额定电流是指通电1小时不熔断的电流;而熔断电流为额定电流的两倍,在10秒钟风熔断。所以,当负载具有开机冲击电流时,应视冲击电流特点选用额定电流为负载电流3~8倍的熔断器。此外,若选用熔断器的特性、分断能力不当,也会使电器失去保护甚至损坏。如选用长延时(TT)的熔断器替代特别快速(FF)熔断器,一旦发生故障时就可能造成电器内元器件损坏。因此在更换损坏的熔断器时应坚持规格、参数、特性要一致的原则,不能犯只要电流、电压相同就可替换的错误。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

58
 
电容的主要分类及如何选择电容
1.电容的主要作用
电容器作为基本元件在电子线路中起着重要作用,在传统的应用中,电容器主要用作旁路耦合、电源滤波、隔直以及小信号中的振荡、延时等。以上电路对电容器参数的主要要求有:电容量;额定电压;正切损耗;漏电流等,对其它参数没有过多的要求。
电容器通常是按其制造的介质材料分类。在选择电容器时,工作频率是最重要的特性之一。
2、电容器介绍
2.1 瓷介电容器
各种电容器中,瓷介电容器应用最广。原因是价格低、特性范围宽、容积效率高以及频率范围高端极高等特点。常用瓷介电容器可分为I型和II型两大类。
I型瓷介电容器的特点是介质损耗低、容量对温度、频率、电压和时间的稳定性都比较高,常用于高频电路及对电容器要求较高的场所。
II型瓷介电容其主要特点是体积小、容量大,但电容量对温度、频率、电压和时间的稳定性较差,介质损耗也较大,常用在低频电路中。
独石型瓷介电容器具有体积小、可靠性高、耐湿性好等优点,大量应用于集成电路中作为分立元件和用于要求小型化的电子设备中。

2.2 金属化纸介电容器
容积比率大、工作电场强度高、绝缘不良。可用于直流或脉动电路。

2.3 涤纶电容器
电参数随温度变化较大。可用于直流和脉动电路。

2.4 云母电容器
云母电容器具有优良的电气特性,绝缘强度高,损耗小,而且温度、频率特性温稳定,不易老化,电容精度容易达到±1—±5%,甚至更高。常用于高频电路中,并可做成标准电容器。
独石云母电容器具有体积小、电容量大、性能稳定、电感小和高频性能好等特点。
云母电容器的耐热性能好,但抗潮湿性能差。

2.5 漆膜电容器
特点是电容量与频率特性好,在100—1000Hz范围内容量几乎没有什么变化。常用在低电压、大容量、小体积、高可靠的电子设备中。

2.6 玻璃釉电容器
玻璃釉电容器的容量对温度的稳定性及频率的稳定性比一般瓷介电容器强,比云母电容器差。耐潮湿,抗振性能好,可用于海上环境使用。

2.7电解电容器
常用的电解电容器有铝电解电容器和钽、铌电解电容器。
铝电解电容器由于价格便宜、品种齐全而得到大量使用。漏电流和损耗较大,容量稳定性较差。钽、铌电解电容器的体积较小、性能较稳定。
3、电容器的标称容量系列和允许偏差系列
根据GB 2471,固定式电容器的标称容量系列和允许偏差系列采用E3、E6、E12、E24、E48、E96系列。EXX系列的表格请参考“电阻概论”。
下面介绍多层片式瓷介电容器的标称容量系列和允许误差系列。根据GB/T 9324,标称电容量应优先从E3、E6、E12和E24系列中选取。
I类电容器优先标称电容量允许偏差
优先系列 允许偏差 CR≥10Pf 字母代码 CR<10Pf 字母代码
E6 ±20% M ±2pF G
E12 ±10% K ±1pF F
E24 ±5%
±2%
±1% J
G
F ±0.5Pf
±0.25pF
±0.1pF D
C
B
II类电容器优先标称电容量允许偏差
优先系列 允许偏差(%) 字母代码
E3和E6  -20/+80     Z
-20/+50 S
E6      ±20 M
E6和E12 ±10 K
4、电容器的额定电压系列
4.1根据GB 2472,电容器的额定工作电压应符合下表规定 单位:伏
1.6 4 6.3 10 16 25 32* 40 50* 63
100 125* 160 250 300* 400 450* 500 630 1000
1600 2000 2500 3000 4000 5000 6300 8000 10000 15000
20000 25000 30000 35000 40000 45000 50000 60000 80000 100000
注:有“*”者只限电解电容器采用
数值下有“—”者建议优先采用
4.2 额定工作电压系指电容器在最低环境温度和额定温度之间的任一温度下可以连线加在电容器上的最大直流电压或最大的交流电压有效值。
5、电容器的封装
直插电容封装
对铝电解电容器来讲,主要尺寸有4个:
L——电解电容器高度
D——电解电容器直径
F——电解电容器2引脚间距
d——电解电容器引脚直径
一般来说,额定电压高、容值大的电解电容器尺寸大。
对NPO瓷介电容器来讲,主要尺寸有4个:
W——NPO外壳最大宽度
H——NPO外壳高度
F——NPO引脚间距
d——NPO引脚直径
尺寸数据由生产厂家提供,常用的脚间距尺寸为100mil、200mil。
贴片多层陶瓷电容封装
主要封装有0402、0603、0805、1206、1210等。
高压片状电容器
主要封装有1206、1210、1808、1812、1825、2225、3640等。
贴片钽电容封装
主要封装有3216、3528、6032、7343、7343H等。
6、电容器的标识
6.1直接标注法
主要标注有额定电压、额定容量、额定温度、厂家标志、产品系列号、容量精度等,要求标出尽可能多的参数。
6.2 数字代码标注法
电容上使用数字/字母标注,如标注为225K,则代表容量值为2.2u,精度为±10%。
电容上无标注,由外包装说明,常用于贴片电容。引用泉州火炬厂的标注方法,示范如下:
如高压贴片电容
1808 A A 271 K A 1 1 A
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨
① 封装1805
②额定电压1000V=A
③温度系数 COG=A
④容量值 270pF=271
⑤ 容量误差 ±10%=K
⑥故占率 A=不适用
⑦端接: 1=PD/Ag
⑧标记/包装 1=7"卷式压印 带/无标记
⑨专门代码:A=标准
多层陶瓷贴片电容的外包装标注
0805 5 A 101 J A T 2 A
规格 电压 温度系数 电容值 误差 故障率 端接 包装记号 专门代码
2.0mm*1.25mm 50V 100pF ±5% 不适用 标准 7"卷式纸带/无标记 标准产品
7、介绍常用的多层陶瓷电容器
7.1 NPO的特性及主要用途
属1类陶瓷介质,电气性能稳定,基本上不随时间、温度、电压变化,适用于高可靠、高稳定的高额、特高频场合。
特性:
电容范围 1pF~0.1uF (1±0.2V rms 1MHz)
环境温度: -55℃~+125℃ 组别:CG
温度特性: 0±30ppm/℃
损耗角正切值: 15x10-4
绝缘电阻: ≥10GΩ
抗电强度: 2.5倍额定电压 5秒 浪涌电流:≤50毫安

7.2 X7R的特性及主要用途
属2类陶瓷介质,电气性能较稳定,随时间、温度、电压的变化,其特性变化不明显,适用于要求较高的耦合、旁路、源波电路以及10兆周以下的频率场合。
特性:
电容范围 300pF~3.3uF (1.0±0.2V rms 1KHz)
环境温度: -55℃~+125℃ 组别:2X1
温度特性: ±15%
损耗角正切值: 100Volts: 2.5% max
50Volts: 2.5% max
25Volts: 3.0% max
16Volts: 3.5% max
10Volts: 5.0% max
绝缘电阻: ≥4GΩ或 ≥100S/C (单位:MΩ)
抗电强度: 2.5倍额定电压 5秒 浪涌电流:≤50毫安

7.3 Y5V的特性及主要用途
属 2类陶瓷介质,具有很高的介电系数,能较容易做到小体积,大容量,其容量随温度变化比较明显,但成本较低。广泛应用于对容量,损耗要求不高的场合。
特性:
电容范围 1000pF~22uF (0.3V 1KHz)
环境温度: -30℃~+85℃
温度特性: ±22%~-82%
损耗角正切值: 50Volts: 3.5%
25Volts: 5.0%
16Volts: 7.0%
绝缘电阻: ≥4GΩ或 ≥100S/C (单位:MΩ)
抗电强度: 2.5倍额定电压 5秒 浪涌电流:≤50毫安
2类陶瓷介质的温度特性
X7R:ΔC/C±15%, (-55℃~125℃)
X5R:ΔC/C±15%, (-55℃~85℃)
Z5U:ΔC/C+22~-56%, (+10℃~+85℃)
Y5V:ΔC/C+22~-82%, (-30℃~+85℃)

补充:铝电解电容在电路中需要考虑的参数还有ESR(等效串连电阻),这个参数值影响纹波电压大小,现在一般LOW ESR电容的ESR值在几十mΩ,ESR=损耗角正切值/(2* Π*f*c),Π=3.1415 ,f=使用频率,c=制品静电容量;还有一个就是所允许通过的最大纹波电流值,当然大一些比较好了。
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

59
 
晶闸管保护电路中快速熔断器的选择
晶闸管过流保护方式有脉冲移相限流保护、直流快速断路器保护、快速熔断器保护等。其中快速熔断器过流保护在晶闸管电路中使用较为普遍。快速熔断器作为晶闸管过流保护可以串联在交流侧、直流侧或直接与晶闸管串联。其中以快速熔断器与晶闸管直接串联对晶闸管保护作用最好。
选择与晶闸管串联快速熔断器额定电流应按如下公式计算并选取数值。
当晶闸管额定电流≤200A时, IF≥1.57IN。
式中IF一快速熔断器额定电流;IN一晶闸管额定电流。
当晶闸管额定电流>200A时,IF≥1,57IT。快速熔断器的主要技术数据,式中IT——晶闸管通态平均电流(平均值)
附表所示为晶闸管专用快速熔断器主要技术参数。

型号
   名称
  电压(V)     额定电流(A) 熔断时间s不大于 极限分断能力(A)     用途
熔管 熔体 1.1IN 4IN 6IN 7IN
IRLS2

  螺旋式
快速熔
断器
  500

  (30) 16,20,25(30)。          50000

  用于工频交流
50Hz、 电压至
500V,作为晶闸管
及其成套装置的
短路及过流保护。
63  35,(45),50,         
100
   63,(75),80,
(90),100         
RS3
  有填料
封闭管
式快速
熔断器 500
   50
   10,15,20,25,
    30,40,50,   0.06
    0.02
   25000
  用于工频交流50Hz、电压至750V,作为晶闸管整流元件及其成
套装置的短路及过流保护。
100     80.100. 5小时内
不熔断   0.02 25000
200  150,200. 0.02    50000
300     250,300 0.02    50000
750  200     150  5小时内
不熔断 0.06 0.02    50000
300     250  0.02    50000
此帖出自单片机论坛
 
 
 

回复

6366

帖子

4918

TA的资源

版主

60
 
PTC热敏电阻的选型方法
每一种热敏电阻都有“耐压”、“耐流”、“维持电流”及“动作时间”等参数。您可以根据具体电路的要求并对照产品的参数进行选择,具体的方法如下:
1.首先确定被保护电路正常工作时的最大环境温度、电路中的工作电流、热敏电阻动作后需承受的最大电压及需要的动作时间等参数;

2. 根据被保护电路或产品的特点选择“芯片型”、“径向引出型”、“轴向引出型”或“表面贴装型”等不同形状的热敏电阻;
3. 根据最大工作电压,选择“耐压”等级大于或等于最大工作电压的产品系列;
4. 根据最大环境温度及电路中的工作电流,选择“维持电流”大于工作电流的产品规格;
5. 确认该种规格热敏电阻的动作时间小于保护电路需要的时间;
6. 对照规格书中提供的数据,确认该种规格热敏电阻的尺寸符合要求。
  例如,某控制电路需要过流保护,其工作电压为48伏特、电路正常工作时电流为450毫安、电路的环境温度为50℃。要求电路中电流为5安培时2秒内应把电路中的电流降到500毫安以下。 我们可以根据其工作电压48伏特,首先选择耐压等级为60伏特的KT60-B系列热敏电阻,如表1所示;然后对照该系列热敏电阻的维持电流与温度关系列表选择KT60-0750B或KT60-0900B两种规格的产品,如表2所示;再根据动作时间与电流的关系图发现,5安培时KT60-0750B的动作时间为1秒钟左右而KT60-0900B的动作时间为2秒钟左右,如图1所示;因而应选择KT60-0750B规格的热敏电阻。该种规格的热敏电阻动作后电路中的电流小于30毫安,因而能够满足过流保护的要求。
此帖出自单片机论坛
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/8 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表