1.2 红外测温仪
监测体温对早期预防疾病有很大的作用。红外测温仪可以在不接触人体的情况下测量温度,这有助于缓解接触感染的传播。红外测温仪通过传感器接收人体发出的红外线, 得出感应温度数据。非常适合对流感快速,非接触式的安全排查。
图3. 红外测温仪的组成
电源轨部分:
整个系统通过1~2节的AAA电池供电,为了匹配MCU的工作性能,系统需要使用一个低功耗的boost将电压升到一个稳定的值,一般是3.3V,来为MCU,LCD,LED,传感器以及运放供电。通常会有LDO级联在Boost芯片之后用于提升传感器输入信号的质量。如果在人流较多的场合使用,就有长待机需求。此时可以选择加入虚线框类的并联二极管网络,在电池电压较高时采用电池直接给系统供电。当电池电压低于MCU的门限电压时,采用Boost电路为系统供电。从而最大化的延长电池的使用时间。
信号链部分:
用户通过按键来开启红外测温系统的运行。系统通过红外传感器和温度传感器感知被测物的温度,如果使模拟传感器,会经过一级模拟运放将调理完的信号传递到MCU中。如果是数字信号,一般通过I2C将信号传递到MCU中。MCU采集到相应的信号之后,执行相应的算法,将被测物体的温度信息显示到LCD屏幕上,LCD的背光一般采用一个LED灯。如果被测物体的温度高于37℃,蜂鸣器就会进行提示。
红外体温检测仪对设备电池供电的续航提出了要求,因此测温仪的低功耗运行便成为系统设计的关键挑战。为了匹配MCU的工作性能,常见的供电电压为3.3V/5V。LCD屏幕常见的供电电压为3V。
图4是一个典型AAA电池的放电曲线,一般MCU的最低工作电压为2.2V。在两节电池串联供电的场合下, 考虑干电池的内阻为300毫欧时,在50mA的放电电流之下,单节电池在1.25V时已经不能为MCU提供电能。通过电池厂家提供的数据手册可以得到单节电池1.25V时的放电时长为10h,而在0.8V时放电时长可达到22h。相比于电池直接为MCU供电的方式,采用Boost芯片后可以在同样功耗下将系统的运行时间延长大约120%。
图4. AAA电池在21℃的放电曲线(来自Energizer数据手册)
1.3 血氧测试仪
通过检测还原血红蛋白和有氧合血红蛋白,对红光LED(660nm)和红外光LED(910nm)这两种不同波长的光吸收的区别,将检测的数据差作为血氧饱和度最基本的数据。
根据“第四版新型冠状病毒诊疗方案”,静息状态下(没有运动和情绪激动)血氧低于93%(居家建议低于95%),可能有肺部感染,建议即时就医诊治。
图5. 血氧测试仪组成:
|