2964|0

1148

帖子

0

TA的资源

纯净的硅(高级)

楼主
 

车用FPGA—在引擎控制单元运行中发挥可靠效能 [复制链接]

 传统上,汽车电子工程师利用MCU、定制ASIC和体积庞大的电线束来引进及控制电子系统,并随着汽车的更新换代而扩展功能。然而,由于这些方案日渐发展至接近其技术和应用极限,汽车工业正面临新的设计挑战。因此,许多设计人员都转向FPGA来解决有关问题,包括舒缓产品更快推出市场的压力;增加元件数目;在单一硬件平台上实施标准化;以及不断升级的安全要求。 
     过去习惯于漫长的产品和开发周期,许多汽车制造商现正致力于在更短的时间内,装备电子消费者所需的新一代汽车。诸如GPS导航系统和DVD播放机等设备的使用寿命相对较短,因此,产品推出市场的时间非常重要。与传统的汽车应用不同,这些娱乐和远程信息处理系统的特点是其中等生产规模及上市压力与消费市场相若。今天,采用ASIC可能会令开发周期增加30周,加上ASIC的掩模成本大幅攀升,使到器件的支出和风险也进一步提高。 
     与此同时,因为当今的汽车引入了许多标准和技术,令到ASIC的应用缺乏固有灵活性,从而增加其被废弃和延迟应用的风险。消费者还要求享有各式的功能选项,使得汽车厂商必需以一套元件组合为基础,再根据不同需求进行配置。为了快速实现这些高度集成和不断变化的系统,产品能够快速推出市场的FPGA为汽车厂商带来了所需的灵活性,可在现场进行系统硬件升级,而毋须执行昂贵的返工工程和部件更换。所以,FPGA现已应用于汽车电子中,范畴从设计验证到制造和服务。 
     最后,随着汽车内的空间非常珍贵,可编程逻辑能在小型单芯片方案上集成许多不同功能的能力,也显得极之吸引。 
     今天的汽车电子还有一个要求,就是大批量制造 (以低成本),并且在严苛的环境中保持高可靠性,此外还需要在这个快速发展和竞争激烈的市场中考虑设计安全问题。评估FPGA器件的技术决策者因此需要了解所考虑器件的可靠和安全特性。 
     FPGA故障可由许多机械原因造成。其中,某些问题如ESD曝光及其它封装和组装是半导体器件所固有的;其它如电介质材料随时间发生击穿,或者易受亚原子粒子碰撞影响的问题,则随着工艺几何尺寸的缩小而日益重要。所有问题都受到电子元件可靠性的传统敌人 – 温度应力 – 所影响。 
     汽车电子设计人员通过使用具有扩展温度范围的FPGA技术,显著提高抵抗多种故障的能力。虽然许多元件供应商采用预防性的设计技术及限定方法来模拟和仿真环境应力,但是某些FPGA构架在承受扩展温度范围曝光方面仍然具有先天优势。举例说,Actel以反熔丝为基础的汽车器件能承受业界最高的结点温度 (+150C),为设计人员的高可靠性系统带来更大的性能容限。 
     在高温下工作的能力不仅有利于抵御故障,汽车电子应用在空间和成本上都没有余地来加设风扇和散热装置,因此器件必须在没有外部散热装置的情况下仍能提供所需的性能。 
     极端的环境往往会导致与FPGA组装和封装相关的故障模式,而非与装置本身有关。所以在汽车电子系统的各个层面预留规格的余地非常重要。FPGA供货商如Xilinx 和Actel等提供的产品具有宽广的军用温度范围,能够更好地处理热膨胀系数,避免热应力的影响。 
     即使于正常的温度和电压下工作,在FPGA的栅极氧化膜上反复施加电压应力最终也会使器件内的电介质绝缘层发生击穿。这种随使用时间累计而产生的击穿现象称为“时间相关绝缘击穿”(TDDB)。加上深亚微米技术的使用,会增加这类故障在现场发生的风险。 
     问题是新工艺采用高压应力测试进行评估。这些测试在取得氧化膜寿命的统计预测数据,以及探测重要的制造与工艺难度方面很有效,但在建模和预测产品的早期故障方面收效甚微,特别是对于偶发性的故障。早期的击穿会在器件投入使用后很短时间内造成严重的故障后果 (见图1),可能涉及汽车系统安全方面的重要问题和质保责任。 
  
 
   图1 恒压条件下4.2 nm氧化膜的TDDB评测结果 (注意早期击穿区域产生的偶发性故障) 
     找出及消除这些早期击穿故障的原因是一大挑战。从TDDB数据进行测试和验证能得出氧化膜的真正击穿寿命极限,但是这些数据在确定单个器件产品的寿命方面并不可靠。 
     即使半导体供应商有方法找出或消除早期故障,越来越多推测指出90nm器件的真正寿命周期可能不足以满足许多商业应用的要求。如果这些理论正确,汽车产品设计人员可能别无选择,只有采用更可靠几何尺寸和工艺的器件,为了提高可靠性而被迫放弃新一代工艺的边际效益。 
     了解汽车电子产品的主要物理故障风险后,在文中转而讨论安全和防窜改等问题可能显得奇怪。 
     然而,任何影响汽车系统可靠性因素的讨论,如果没考虑人为干预 (有意或无意的) 的影响,都是不完整的。重要的是,我们必须确认汽车安全性和可靠性的建立是从组件层面开始。举例说,如果黑客能够侵入以FPGA为基础的卫星无线总台接收器,并破坏用户的身份鉴别机制,某些不道德的用户就可以免费取用服务。系统的安全机制一旦被击破,便可轻易地将有关的技术散布给大众取用。只要登陆eBay等网站,您就可轻松找到各种破解收费服务的控制台。从汽车制造商的角度来看,高风险的情况可能涉及汽车的防盗或安全系统。 
     或许更危险的情况是越来越多人尝试“调较”汽车产品以提高性能,此举通常会破坏地区或国家性的安全和环境标准。这类非法改装活动经由多种渠道提供,往往很难以控制和打击。许多改装者会重新校准各式车载系统元件的常规设置,并修改燃油输送、电子点火时间及其它控制功能,以便增强性能。 
     当然,这些改变可能会造成汽车在违反制造商的技术规格和保修规定的情况下行驶,但聪明的改装者却提供选项,可以将所有改动还原,令到损坏及超标使用的汽车符合制造商的保修条款,以期获得合法的赔偿。 
     要减少这些安全问题,应从技术的选定开始。业界专家普遍同意反熔丝是现有最安全的可编程架构,因为要清楚读取以反熔丝为基础器件的状态极之困难。例如,Actel的200万门反熔丝FPGA包含约5,300万个反熔丝,当中只有2-5% 会在一般的设计中进行编程。因此,若要成功读取某项设计的内容机会微乎其微,遑论更改其中的编程状态。 
     一般而言,以Flash为基础的器件也是安全的;由于Flash的半导体层面不会发生任何物理变化,因此不可能通过非法探测来得知器件的状态。一些供应商甚至采用访问密钥等方案,进一步加强保护措施。Actel的新型ProASICPLUS系列便采用了79至 263 位长的密钥,一旦用密钥来保护后,内容便不可能被读取,除非对器件进行解锁。 
     相反地,以SRAM为基础的器件需要外加配置器件 (通常为板载PROM),在上电时向SRAM器件发送配置位流。但这位流很容易被黑客拦截,从而进行复制或直接读取其内容。 
     Life Racing 赛车应用     
 在众多汽车电子系统开发领域中,赛车一直是FPGA大显身手的场所。其中于汽车引擎控制单元 (ECU) 领域,FPGA便可协助提升灵活性、性能和可靠性。各大涉及赛车业务的机构,如先进引擎研究有限公司 (Advanced Engine Research Ltd;AER)属下的电子设计部Life Racing,已开始在其ECU设计中引入Actel以Flash为基础ProASIC Plus的FPGA器件。竞争性的赛车ECU需要采用复杂的调节算法,专为每个独立的控制器而优化,以管理引擎的定时功能。使用传统的解决方案即标准定时处理单元 (TPU) 控制器,这个关键软件会随着应用要求的改变,需要进行重大的修改。然而,借助以Flash为基础FPGA的系统内可重编程功能 (ISP),设计人员可以利用单芯片的上电运行FPGA器件取代现成的TPU控制器,从而缩短软件开发时间、减少调试需求和加速产品的整体上市时间。 
 
    在ECU中,FPGA一般的主要功能是从机轴触轮信号中提取引擎的位置信息。FPGA会根据抽象的机轴角度发出CPU中断信号,而非传统设计应用的触轮齿位,因而提高了灵活性和精度。ECU通常会将燃料添加和点火动作编为定时的调度事件,并以调度代码执行时间的引擎工作状况为基础。在事件发生前改变引擎工作状态会引起角度误差,而调度代码往往与当前引擎的机轴触轮轮齿式样密切相关。FPGA能令调度代码不受信号式样影响,还能通过监测引擎工作状况来进行事件调度和持续调节,直至事件发生。此举能提升代码效率和灵活性,同时改善动态状况下的控制精度。 而且,以Flash为基础FPGA – 如Actel的ProASIC Plus – 的上电运行功能,能助设计人员除去传统需要用来阻止燃料注射驱动器或点火线圈驱动器在上电期间启动的附加元件。 
     Life Racing专有的ECU设计F88便成功地应用于2003 年度Superfund World Series的第一轮赛事中 — 这是进入一级方程式大赛 (Formula 1) 的重要踏脚石。 
   
 
     目前,商用道路车辆制造商也在考虑采用Life Racing 的ECU。这个控制单元具有高度灵活性,最适用于原型制造和研发环境,能应付各式不同的引擎设置。 
     对于汽车半导体厂家来说,最后一个并且在不断增长中的风险是由高能中子引起的软件和固件错误。向着深亚微米几何尺寸发展的趋势同时令到问题加深。当中子轰击集成电路时,大多数都是直接穿过,但偶然会有一个中子干扰硅原子或掺杂原子,从而改变内存单元或触发器的状态。 
     如果该内存单元存储着FPGA的配置信息,便可能会造成器件或所连接器件发生内部竞争,从而产生过大电流,导致器件或系统损坏。这样,软错误变成“固件”错误,最终再变为“硬件”错误。最低限度的情况是,FPGA编程改变,结果可能造成功能失效。而这问题经已使得电信网络和其它高可用性系统制造商着手制定新的元件要求,对软错误的免疫力作出强制规定。 
     这个领域的研究仍然继续。不过,初步的调查说明以Flash和反熔丝为基础的FPGA具有此类错误的免疫功能,而以SRAM为基础的器件则面对更严峻的问题。 
     FPGA正获得广泛接纳,用于新一代汽车电子的设计方案中。在选择FPGA的过程中深入了解各种技术的独特性能,汽车设计人员便能从最有前景的技术中获益,而不会影响业界在制造高可靠性和成本效益汽车方面的美誉。 

此帖出自汽车电子论坛
点赞 关注

回复
举报
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/7 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表