1、 性能优异为便携式设备选择拓宽了新途径 多年来,为设计多组开关稳压电源选择性能价格比较高的电源控制芯片,一直是制造业心想事成的问题,这是因为电源控制芯片不是引脚多调试繁多,就是引脚少了功能不理想。 而TOPSwitchlI单片开关电源是美国PI(Power Integration)公司较新推出的高频开关电源芯片,它能将开关电源所必需的具有高压N沟道功率MOS场效应管、电压型PWM控制器、100kHz高频振荡器、高压启动偏置电路、基准电压、用于环路补偿的并联偏置调整器、误差放大器和故障保护功能块等全部集成在一起,是属引脚少(仅为3线)功能强向的高频开关电源芯片。 它可广泛用于仪器仪表、笔记本电脑、VCD和DVD、电池充电器、功率放大器等领域,用它构成的开关电源具有重量轻、体积小、效率高、稳压范围宽等优点,在电子电气、控制、计算机等许多领域的电子设备中得到了广泛的使用。为此本文将介绍应用TOP222Y高频单片开关电源控制芯片为核心的多组开关稳压电源设计方案。 2、多组(5组)开关电源设计方案 2.1以TOP222Y高频单片开关电源控制芯片为核心的电源组成图,见图1所示。TOP222Y为DC/DC变换器,其芯片引脚3、2、1分别与高频变压器输入及初级、输出次级及地、输出反馈等相连接。 2.2电源电路拓扑为单端反激式 该电源电路拓扑为单端反激式,反激式则是指当功率开关管MOSFET导通时,就将电能储存在高频变压器的初级线圈上;当MOSFET关断时,向次级输出电能。由于开关频率高达100KHz,使得高频变压器能够快速储存、释放能量,经高频整流滤波后即可获得连续输出。 2.3电源单级滤波器作用 220V交流进线端接入电磁滤波器(EMl),为了减少体积和降低成本,单片开关电源一般采用简易式单级滤波器。L1用来滤除共模干扰,C1、C2用来滤除串模干扰。电源滤波器的作用:一方面是滤除由电网传来的杂波电压,净化输入电源,另一方面也阻止高频开关电源的振荡电压窜入电网干扰其它电器。 2.4整流与DC/DC变换器 市电经整流和电容滤波后,变成308V的直流电压供给TOP222Y器件,TOP222Y构成DC/DC变换器,它将输入的直流高压变成脉宽可调的高频脉冲电压,经高频变压器降压后再进行半波整流和滤波,变成所需要的直流电压输出。 2.5瞬态电压抑制电路 阻塞二极管D6与瞬态电压抑制器D5组成吸收电路,吸收功率器件在关断过程中由于变压器漏感产生的尖峰电压,当TOP222Y功率管导通时初极变压器的电压极性为上端为正,下端为负,使D6截止,钳位电路不起作用。在MOSFET截止的瞬间,初极变压器变成下端为正,上端为负,此时D6导通,尖峰电压就被D5吸收掉。 2.6关于高频变压器与反馈稳压电路 高频变压器的次级有5个绕组,其中的13.2V/300mA绕组V1为主绕组控制TOP222Y器件的脉宽,即这一组输出电压为PWM稳压,由并联可编程稳压器TL431和光电耦合器PC817及分压电阻R4、R5完成取样反馈工作。当输出们电压升高时经R4、R5分压后得到取样电压与TL431中的带隙基准电压进行比较,使TL431阴极电位下降,使流过光电二极管工作电流If增大,再通过光耦PC817使控制端电流Ic增大,TOP222Y的输出占空比减小,使们电压下降。达到稳压的目的。 电阻R3为V1输出的最小负载,用于提高轻载时的电压调整率。当输出电压偏低时, R3的作用是给431提供电流偏执通路。为避免刚接通电源时输出电压产生过冲现象,TL431的阴极与阳极之间并联一只软启动电容C12。其作用分析如下:刚上电时由于C12两端的压降不能突变,使得VKA=O,TL431不工作。随着整流滤波器的输出电压逐渐升高,光耦二极管(LED)上的电流就通过R2对C12充电,使C12上的电压不断升高,TL431逐渐转入正常工作状态。输出电压在延迟时间内缓慢上升,最终达到13.2V稳定值。 2.7取样与反馈电阻的确定 如何确定R2、R3、R4及R5的值。首先要搞清TOP管的控制特性。从TOPSwicth的技术手册可知流入控制脚C的电流Ic与占空比D成反比关系,如图2所示。可以看出Ic的电流应在2-6mA之间,PWM会线性变化,因此PC817三极管的电流Ice也应在这个范围变化。而Ice是受二极管电流If控制的,R1的取值要保证TOP控制端取得所需要的电流,假设用PC817,其CTR=Ic/IF=0.8-1.6,从TL437的技术参数知,Vka在2.5V-36V变化时,阴极工作电流IKA可以在从1mA到100mA以内很大范围里变化。当光偶CTR取低限0.8时,此进流过光二极管的最大电流,IFMAX-=6/0.8=7.5mA,TL431阴极电压VkA=Vo-VF-( IFMAX×R2)>2.5V,其中VF为光偶二极管的正向压降。VF典型值为1.2V。 VkA=13.2-1.2-7.5×R2>2.5V R2<1.3k(取R2=250Ω) 431要求至少有1mA的工作电流,也就是R2的电流接近于零时,也要保证431有1mA,所以R3<=1.2V/1mA=1.2K(取R3=510Ω即可)。 R5的取值,R5的值不是任意取的,要考虑两个因素: * 431参考输入端的电流,一般此电流为2μA左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R5的电流为参考段电流的100倍以上,所以此电阻要小于 2.5V/200μA=12.5K. *待机功耗的要求,如有此要求,在满足R5≤12.5KΩ的情况下尽量取大值。取R5=10KΩ。 确定了上面几个关系后,那R4电阻的值就好确定了。根据TL431的性能,R4、R5、Vo、Vr有固定的关系:Vo=(1+R4/R5)Vr(Vr=2.5V)由此可算出R4=43.kΩ。 3、开关电源电路主要参数的设计 值此仅对各组输出功率之和、输出直流电压、最大占空比、初级电流有效值及峰值、初级绕组电感值旧及初次极绕组匝数等主要参数的计算作介绍。 3.1本电源总输出功率为各组输出功率之和: PO=13.2×0.3+13.2×0.2+28×0.05+2×13.2×0.1+12×0.006=10.71W(反馈绕组功率为12×0.006) 若电源总的效率为80%,则电源输入的总功率应为: Pi=PO/80%=10.7I/0.8=13.4W 在宽范围输入电压条件下,TOP222Y的最大输出功率为15W,能够满足本电路要求。 3.2根据输入交流电压确定最小直流电压、最大直流电压 假定交流输入电压的范围是85V-265V,输入整流桥响应时间为tc=3mS,输入滤波电容C3取22uf,则对于宽范围电压输入,输入电容选取(2-3)PO单位μF,即 对于宽范围电压输入,输入电容选取(2-3)Po单位μF,按比例系数(2~3) μ F/W来选取。 当输入电容取33μF时(推存值),VMIN=94伏。 3.3确定最大占空比 反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: 若将VOR取100V TOP漏-源电压UDS=10V则可算出DMAX=0.6 反激电压VOR的选取不是任意的。对于宽范围电压输入一般取135V,对于多路电源输出一般取100V。 3.4计算初级电流有效值及峰值 单端反激式变换器初级工作方式分为两种:连续模式和继续模式其初级绕组电流波形如图3所示。 KRP为电流脉动系数,利用KRP的数值可以定量地描述开关电源的工作模式,0.4<KRP<1.0时处于连续模式,KRP=1时处于断续工作模式。KRP的值较小意味着更为连续的工作模式和相对较大的初级电感量,并且初级电流的峰值及有效值较小,因此可用功率较小的TOPSwitch芯片。 设在最大占空比时,当开关管开通时,原边电流为Ip1,当开关管关断时,原边电流上升到Ip2。若Ip1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,得出下式:1/2·(Ipl+Ip2)*DMAX*VMIN=Pi 为了提高效率,降低功率损耗,减小集肤效应,我们采用连续工作模式:我们令Ip2=2Ip2这样就可以求出变换器的原边峰值电流Ip2: (0.5 Ip2+ Ip2)×0.6×77=2×13.4 Ip2=0.387A TOP222Y极限电流最小值IL1MIN=0.45A,极限电流最大 值IL1MAX=0.55A 原边峰值电流Ip2必须满足: 一次绕组脉动电流 一次绕组脉动电流旧与一次绕组峰值电流,Ip2的比值 一次绕组有效值电流 3.5确定初级绕组电感值 一次绕组电感量: 3.6确定初次极绕组匝数 选择E122磁芯作为磁芯选择依据(一般选择最大磁通密度Bm=0.2T-0.3T低于0.2T磁芯未被充分利用,高于0.3所用铁氧体材料可能发生饱和),Bm选择0.25T(特斯拉) 次级V2、V4、V5绕组匝数N2=N4=N5=N1=11匝 4、结束语 由于TOP222Y高频单片开关电源控制芯片引脚少,所以该多组开关电源性能调试方便简单,故障率少可靠性高。 至于高频变压器的计算是没有唯一的答案的,在计算过程中需要考虑大量相互关联的设计变量,变量取值不同,其设计的结果就会有一些差异,有时理论算出的值与实际会有差异,需通过进一步调整才能满足兴实际要求。
|