3656|4

1121

帖子

0

TA的资源

版主

楼主
 

估算热插拔 MOSFET 的瞬态温升 [复制链接]

本帖最后由 ohahaha 于 2016-1-26 11:34 编辑

估算热插拔 MOSFET 的瞬态温升-------第1部分
在本文中,我们将研究一种估算热插拔 MOSFET 温升的简单方法。 
 热插拔电路用于将电容输入设备插入通电的电压总线时限制浪涌电流。这样做的目的是防止总线电压下降以及连接设备运行中断。通过使用一个串联组件逐渐延长新连接电容负载的充电时间,热插拔器件可以完成这项工作。结果,该串联组件具有巨大的损耗,并在充电事件发生期间产生温升。大多数热插拔设备的制造厂商都建议您查阅安全工作区域 (SOA) 曲线,以便设备免受过应力损害。图 1 所示 SOA 曲线显示了可接受能量区域和设备功耗,其一般为一个非常保守的估计。MOSFET 的主要忧虑是其结温不应超出最大额定值。该曲线以图形的形式向您表明,由于设备散热电容的存在它可以处理短暂的高功耗。这样可以帮助您开发一个精确的散热模型,以进行更加保守、现实的估算。    

  图 1 MOSFET SOA 曲线表明了允许能耗的起始点  在《估算表面贴装半导体的温升》中,我们讨论了一种电气等效电路,用于估算系统的散热性能。我们提出在散热与电流、温度与电压以及散热与电阻之间均存在模拟电路。在本设计小贴士中,我们将增加散热与电容之间的模拟电路。如果将热量加到大量的材料之中,其温升可以根据能量 (Q)、质量 (m) 和比热 (c) 计算得到,即:    

  能量正好是功率随时间变化的积分:    

  然后合并上述两个方程式,我们得到我们的电容散热模拟 (m*c) 如下:    

  表 1 列出了一些常见材料及其比热和密度,其或许有助于建模热插拔器件内部的散热电容。    

  表 1 常见材料的物理属性  只需通过估算您建模的各种系统组件的物理尺寸,便可得到散热电容。散热能力等于组件体积、密度和比热的乘积。这样便可以使用图 2 所示的模型结构。  该模型以左上角一个电流源作为开始,其为系统增加热量的模拟。电流流入裸片的热容及其热阻。热量从裸片流入引线框和封装灌封材料。流经引线框的热量再流入封装和散热片之间的接触面。热量从散热片流入热环境中。遍及整个网络的电压代表高于环境的温升。    

  图 2 将散热电容加到 DC 电气模拟  热阻和热容的粗略估算显示在整个网络中。该模型可以进行环境和 DC 模拟,可帮助根据制造厂商提供的 SOA 曲线图进行一些保守计算。下次,我们将继续讨论热插拔旁路组件,敬请期待。我们将对等效电路中的一些散热时间恒量进行讨论。

最新回复

图是怎么回事  详情 回复 发表于 2016-8-4 22:38
点赞 关注

回复
举报

1121

帖子

0

TA的资源

版主

沙发
 
估算热插拔 MOSFET 的瞬态温升——第 2 部分 
在《估算热插拔 MOSFET 的瞬态温升——第 1 部分》中,我们讨论了如何设计温升问题的电路类似方法。我们把热源建模成了电流源。根据系统组件的物理属性,计算得到热阻和热容。遍及整个网络的各种电压代表各个温度。  本文中,我们把图 1 所示模型的瞬态响应与图 3 所示公开刊发的安全工作区域(SOA 曲线)部分进行了对比。    

  图 1 将散热容加到 DC 电气模拟电路上  根据 CSD17312Q5 MOSFET、引线框以及贴装 MOSFET 的印制电路板 (PWB) 的物理属性,估算得到图 1 的各个值。在查看模型时,可以确定几个重要的点。PWB 到环境电阻(105oC/W)为到环境的最低电阻通路,其设定了电路的允许 DC 损耗。将温升限制在 100oC,可将电路的允许 DC 损耗设定为 1 瓦。其次,存在一个 10 秒钟的 PWB 相关时间恒量,所以其使电路板完全发热的时间相当长。因此,电路可以承受更大的电脉冲。例如,在一次短促的脉冲期间,所有热能对芯片热容充电,同时在更小程度上引线框对热容充电。通过假设所有能量都存储于裸片电容中并求解方程式(dV = I * dt / C)得到 I,我们可以估算出芯片电容器可以存储多少能量。结果是,I =dV * C /dt = 100 oC * 0.013F / 1ms =1300 瓦,其与图 3 的 SOA 曲线图相一致。  图 2 显示了图 1 的仿真结果以及由此产生的电压响应。其功耗为 80 瓦,不同的时间恒量一眼便能看出。绿色曲线为裸片温度,其迅速到达一个 PWB 相关恒定电压(蓝色曲线)。您还可以看到一个引线框的第二时间恒量(红色曲线),其稍微有一些滞后。最后,您还可以看见 PWB 的近似线性充电,因为大多数热能(电流)都流入其散热电容。    

  图 2 热能流入 PWB 时明确显示的三个时间恒量  我们进行了一系列的仿真,旨在验证模型的准确性。图 3 显示了这些仿真的结果。红色标注表示每次仿真的结果。将一个固定电源(电流)放入电路中,相应间隔以后对裸片电压(温升)进行测量。模型始终匹配 SOA 曲线。这样做的重要性是,您可以使用该模型的同时使用不同的散热片和 PWB 参数。例如,该 SOA 数据是针对缺乏强散热能力的最小尺寸 PWB。我们可以增加电路板尺寸来降低其环境热阻,或者增加铜使用量来提供更好的热传播—最终降低温度。增加铜使用量也可以提高散热能力。    

  图 3 散热模型与指示点的 MOSFET CSD17312 SOA 曲线一致
                                

点评

图是不是没有编辑好呢  详情 回复 发表于 2016-8-4 22:38
 
 
 

回复

6

帖子

0

TA的资源

一粒金砂(初级)

板凳
 
所以结论是什么?

点评

水没开,还没揭锅盖的时候  详情 回复 发表于 2016-8-4 22:37
 
 
 

回复

2万

帖子

342

TA的资源

版主

4
 
tdshawn 发表于 2016-8-4 13:36
所以结论是什么?

水没开,还没揭锅盖的时候
 
 
 

回复

2万

帖子

342

TA的资源

版主

5
 
ohahaha 发表于 2016-1-26 11:36
估算热插拔 MOSFET 的瞬态温升——第 2 部分 
在《估算热插拔 MOSFET 的瞬态温升——第 1 部分》中,我们 ...

图是怎么回事
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/10 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表