5437|5

11

帖子

0

TA的资源

一粒金砂(初级)

楼主
 

求助I2C程序 [复制链接]

哪位用过28027的I2C给发一个例程呗,给一个发送接收数据的函数也行。谢谢

最新回复

这个不是官方例程吗?有点看不懂。  详情 回复 发表于 2013-7-27 09:58
 
点赞 关注

回复
举报

4996

帖子

19

TA的资源

裸片初长成(初级)

沙发
 
I2C其实并不复杂,按照时序模拟出来就可以,只要延时得当,可以应用在任何单片机。

点评

新手,28027内部有I2C模块。只是我配置不好无法通信  详情 回复 发表于 2013-7-1 14:55
 
个人签名我的博客
 

回复

11

帖子

0

TA的资源

一粒金砂(初级)

板凳
 

回复 沙发zhaojun_xf 的帖子

新手,28027内部有I2C模块。只是我配置不好无法通信

点评

楼主,您做的怎么样了。我现在做的是焦头烂耳的。一起讨论一下吧。  详情 回复 发表于 2013-7-26 21:07
 
 
 

回复

290

帖子

0

TA的资源

纯净的硅(初级)

4
 

回复 板凳重新开始 的帖子

楼主,您做的怎么样了。我现在做的是焦头烂耳的。一起讨论一下吧。
 
 
 

回复

11

帖子

0

TA的资源

一粒金砂(中级)

5
 

这是我找的例子

// TI File $Revision: /main/4 $
// Checkin $Date: December 17, 2009   14:34:43 $
//###########################################################################
//
// FILE:    Example_2802xI2c_eeprom.c
//
// TITLE:   DSP2802x I2C EEPROM Example
//
// ASSUMPTIONS:
//
//    This program requires the DSP2802x header files.
//
//    This program requires an external I2C EEPROM connected to
//    the I2C bus at address 0x50.
//
//    As supplied, this project is configured for "boot to SARAM"
//    operation.  The 2802x Boot Mode table is shown below.
//    For information on configuring the boot mode of an eZdsp,
//    please refer to the documentation included with the eZdsp,
//
//    $Boot_Table
//    While an emulator is connected to your device, the TRSTn pin = 1,
//    which sets the device into EMU_BOOT boot mode. In this mode, the
//    peripheral boot modes are as follows:
//
//      Boot Mode:   EMU_KEY        EMU_BMODE
//                   (0xD00)         (0xD01)
//      ---------------------------------------
//      Wait         !=0x55AA        X
//      I/O          0x55AA          0x0000
//      SCI          0x55AA          0x0001
//      Wait         0x55AA          0x0002
//      Get_Mode     0x55AA          0x0003
//      SPI          0x55AA          0x0004
//      I2C          0x55AA          0x0005
//      OTP          0x55AA          0x0006
//      Wait         0x55AA          0x0007
//      Wait         0x55AA          0x0008
//      SARAM        0x55AA          0x000A   <-- "Boot to SARAM"
//      Flash        0x55AA          0x000B
//      Wait         0x55AA          Other
//
//   Write EMU_KEY to 0xD00 and EMU_BMODE to 0xD01 via the debugger
//   according to the Boot Mode Table above. Build/Load project,
//   Reset the device, and Run example
//
//   $End_Boot_Table
//
// DESCRIPTION:
//
//    This program will write 1-14 words to EEPROM and read them back.
//    The data written and the EEPROM address written to are contained
//    in the message structure, I2cMsgOut1. The data read back will be
//    contained in the message structure I2cMsgIn1.
//
//    This program will work with the on-board I2C EEPROM supplied on
//    the F2802x eZdsp.
//
//
//###########################################################################
// Original Author: D.F.
//
// $TI Release: 2802x C/C++ Header Files V1.26 $
// $Release Date: February 2, 2010 $
//###########################################################################

#include "DSP28x_Project.h"     // Device Headerfile and Examples Include File

// Note: I2C Macros used in this example can be found in the
// DSP2802x_I2C_defines.h file

// Prototype statements for functions found within this file.
void   I2CA_Init(void);
Uint16 I2CA_WriteData(struct I2CMSG *msg);
Uint16 I2CA_ReadData(struct I2CMSG *msg);
interrupt void i2c_int1a_isr(void);
void pass(void);
void fail(void);

#define I2C_SLAVE_ADDR        0x50
#define I2C_NUMBYTES          2
#define I2C_EEPROM_HIGH_ADDR  0x00
#define I2C_EEPROM_LOW_ADDR   0x30

// Global variables
// Two bytes will be used for the outgoing address,
// thus only setup 14 bytes maximum
struct I2CMSG I2cMsgOut1={I2C_MSGSTAT_SEND_WITHSTOP,
                          I2C_SLAVE_ADDR,
                          I2C_NUMBYTES,
                          I2C_EEPROM_HIGH_ADDR,
                          I2C_EEPROM_LOW_ADDR,
                          0x12,                   // Msg Byte 1
                          0x34};                  // Msg Byte 2


struct I2CMSG I2cMsgIn1={ I2C_MSGSTAT_SEND_NOSTOP,
                          I2C_SLAVE_ADDR,
                          I2C_NUMBYTES,
                          I2C_EEPROM_HIGH_ADDR,
                          I2C_EEPROM_LOW_ADDR};

struct I2CMSG *CurrentMsgPtr;               // Used in interrupts
Uint16 PassCount;
Uint16 FailCount;

void main(void)
{
   Uint16 Error;
   Uint16 i;

   CurrentMsgPtr = &I2cMsgOut1;

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2802x_SysCtrl.c file.
   InitSysCtrl();

// Step 2. Initalize GPIO:
// This example function is found in the DSP2802x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();
// Setup only the GP I/O only for I2C functionality
   InitI2CGpio();

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
   DINT;

// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2802x_PieCtrl.c file.
   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP2802x_DefaultIsr.c.
// This function is found in DSP2802x_PieVect.c.
   InitPieVectTable();

// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
   EALLOW;  // This is needed to write to EALLOW protected registers
   PieVectTable.I2CINT1A = &i2c_int1a_isr;
   EDIS;   // This is needed to disable write to EALLOW protected registers

// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2802x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
   I2CA_Init();

// Step 5. User specific code

   // Clear Counters
   PassCount = 0;
   FailCount = 0;

   // Clear incoming message buffer
   for (i = 0; i < (I2C_MAX_BUFFER_SIZE - 2); i++)
   {
       I2cMsgIn1.MsgBuffer = 0x0000;
   }

// Enable interrupts required for this example

// Enable I2C interrupt 1 in the PIE: Group 8 interrupt 1
   PieCtrlRegs.PIEIER8.bit.INTx1 = 1;

// Enable CPU INT8 which is connected to PIE group 8
   IER |= M_INT8;
   EINT;

   // Application loop
   for(;;)
   {
      //////////////////////////////////
      // Write data to EEPROM section //
      //////////////////////////////////

      // Check the outgoing message to see if it should be sent.
      // In this example it is initialized to send with a stop bit.
      if(I2cMsgOut1.MsgStatus == I2C_MSGSTAT_SEND_WITHSTOP)
      {
         Error = I2CA_WriteData(&I2cMsgOut1);
         // If communication is correctly initiated, set msg status to busy
         // and update CurrentMsgPtr for the interrupt service routine.
         // Otherwise, do nothing and try again next loop. Once message is
         // initiated, the I2C interrupts will handle the rest. Search for
         // ICINTR1A_ISR in the i2c_eeprom_isr.c file.
         if (Error == I2C_SUCCESS)
         {
            CurrentMsgPtr = &I2cMsgOut1;
            I2cMsgOut1.MsgStatus = I2C_MSGSTAT_WRITE_BUSY;
         }
      }  // end of write section

      ///////////////////////////////////
      // Read data from EEPROM section //
      ///////////////////////////////////

      // Check outgoing message status. Bypass read section if status is
      // not inactive.
      if (I2cMsgOut1.MsgStatus == I2C_MSGSTAT_INACTIVE)
      {
         // Check incoming message status.
         if(I2cMsgIn1.MsgStatus == I2C_MSGSTAT_SEND_NOSTOP)
         {
            // EEPROM address setup portion
            while(I2CA_ReadData(&I2cMsgIn1) != I2C_SUCCESS)
            {
               // Maybe setup an attempt counter to break an infinite while
               // loop. The EEPROM will send back a NACK while it is performing
               // a write operation. Even though the write communique is
               // complete at this point, the EEPROM could still be busy
               // programming the data. Therefore, multiple attempts are
               // necessary.
            }
            // Update current message pointer and message status
            CurrentMsgPtr = &I2cMsgIn1;
            I2cMsgIn1.MsgStatus = I2C_MSGSTAT_SEND_NOSTOP_BUSY;
         }

         // Once message has progressed past setting up the internal address
         // of the EEPROM, send a restart to read the data bytes from the
         // EEPROM. Complete the communique with a stop bit. MsgStatus is
         // updated in the interrupt service routine.
         else if(I2cMsgIn1.MsgStatus == I2C_MSGSTAT_RESTART)
         {
            // Read data portion
            while(I2CA_ReadData(&I2cMsgIn1) != I2C_SUCCESS)
            {
               // Maybe setup an attempt counter to break an infinite while
               // loop.
            }
            // Update current message pointer and message status
            CurrentMsgPtr = &I2cMsgIn1;
            I2cMsgIn1.MsgStatus = I2C_MSGSTAT_READ_BUSY;
         }
      }  // end of read section

   }   // end of for(;;)
}   // end of main

void I2CA_Init(void)
{
   // Initialize I2C
   I2caRegs.I2CSAR = 0x0050;        // Slave address - EEPROM control code

   // I2CCLK = SYSCLK/(I2CPSC+1)
   #if (CPU_FRQ_40MHZ||CPU_FRQ_50MHZ)
     I2caRegs.I2CPSC.all = 4;       // Prescaler - need 7-12 Mhz on module clk
   #endif

   #if (CPU_FRQ_60MHZ)
     I2caRegs.I2CPSC.all = 6;       // Prescaler - need 7-12 Mhz on module clk
   #endif
   I2caRegs.I2CCLKL = 10;           // NOTE: must be non zero
   I2caRegs.I2CCLKH = 5;            // NOTE: must be non zero
   I2caRegs.I2CIER.all = 0x24;      // Enable SCD & ARDY interrupts

   I2caRegs.I2CMDR.all = 0x0020;    // Take I2C out of reset
                                    // Stop I2C when suspended

   I2caRegs.I2CFFTX.all = 0x6000;   // Enable FIFO mode and TXFIFO
   I2caRegs.I2CFFRX.all = 0x2040;   // Enable RXFIFO, clear RXFFINT,

   return;
}

Uint16 I2CA_WriteData(struct I2CMSG *msg)
{
   Uint16 i;

   // Wait until the STP bit is cleared from any previous master communication.
   // Clearing of this bit by the module is delayed until after the SCD bit is
   // set. If this bit is not checked prior to initiating a new message, the
   // I2C could get confused.
   if (I2caRegs.I2CMDR.bit.STP == 1)
   {
      return I2C_STP_NOT_READY_ERROR;
   }

   // Setup slave address
   I2caRegs.I2CSAR = msg->SlaveAddress;

   // Check if bus busy
   if (I2caRegs.I2CSTR.bit.BB == 1)
   {
      return I2C_BUS_BUSY_ERROR;
   }

   // Setup number of bytes to send
   // MsgBuffer + Address
   I2caRegs.I2CCNT = msg->NumOfBytes+2;

   // Setup data to send
   I2caRegs.I2CDXR = msg->MemoryHighAddr;
   I2caRegs.I2CDXR = msg->MemoryLowAddr;
// for (i=0; iNumOfBytes-2; i++)
   for (i=0; iNumOfBytes; i++)

   {
      I2caRegs.I2CDXR = *(msg->MsgBuffer+i);
   }

   // Send start as master transmitter
   I2caRegs.I2CMDR.all = 0x6E20;

   return I2C_SUCCESS;
}

Uint16 I2CA_ReadData(struct I2CMSG *msg)
{
   // Wait until the STP bit is cleared from any previous master communication.
   // Clearing of this bit by the module is delayed until after the SCD bit is
   // set. If this bit is not checked prior to initiating a new message, the
   // I2C could get confused.
   if (I2caRegs.I2CMDR.bit.STP == 1)
   {
      return I2C_STP_NOT_READY_ERROR;
   }

   I2caRegs.I2CSAR = msg->SlaveAddress;

   if(msg->MsgStatus == I2C_MSGSTAT_SEND_NOSTOP)
   {
      // Check if bus busy
      if (I2caRegs.I2CSTR.bit.BB == 1)
      {
         return I2C_BUS_BUSY_ERROR;
      }
      I2caRegs.I2CCNT = 2;
      I2caRegs.I2CDXR = msg->MemoryHighAddr;
      I2caRegs.I2CDXR = msg->MemoryLowAddr;
      I2caRegs.I2CMDR.all = 0x2620;         // Send data to setup EEPROM address
   }
   else if(msg->MsgStatus == I2C_MSGSTAT_RESTART)
   {
      I2caRegs.I2CCNT = msg->NumOfBytes;    // Setup how many bytes to expect
      I2caRegs.I2CMDR.all = 0x2C20;         // Send restart as master receiver
   }

   return I2C_SUCCESS;
}

interrupt void i2c_int1a_isr(void)     // I2C-A
{
   Uint16 IntSource, i;

   // Read interrupt source
   IntSource = I2caRegs.I2CISRC.all;

   // Interrupt source = stop condition detected
   if(IntSource == I2C_SCD_ISRC)
   {
      // If completed message was writing data, reset msg to inactive state
      if (CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_WRITE_BUSY)
      {
         CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_INACTIVE;
      }
      else
      {
         // If a message receives a NACK during the address setup portion of the
         // EEPROM read, the code further below included in the register access ready
         // interrupt source code will generate a stop condition. After the stop
         // condition is received (here), set the message status to try again.
         // User may want to limit the number of retries before generating an error.
         if(CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_SEND_NOSTOP_BUSY)
         {
            CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_SEND_NOSTOP;
         }
         // If completed message was reading EEPROM data, reset msg to inactive state
         // and read data from FIFO.
         else if (CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_READ_BUSY)
         {
            CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_INACTIVE;
            for(i=0; i < I2C_NUMBYTES; i++)
            {
              CurrentMsgPtr->MsgBuffer = I2caRegs.I2CDRR;
            }
         {
         // Check recieved data
         for(i=0; i < I2C_NUMBYTES; i++)
         {
            if(I2cMsgIn1.MsgBuffer == I2cMsgOut1.MsgBuffer)
            {
                PassCount++;
            }
            else
            {
                FailCount++;
            }
         }
         if(PassCount == I2C_NUMBYTES)
         {
            pass();
         }
         else
         {
            fail();
         }

      }

    }
      }
   }  // end of stop condition detected

   // Interrupt source = Register Access Ready
   // This interrupt is used to determine when the EEPROM address setup portion of the
   // read data communication is complete. Since no stop bit is commanded, this flag
   // tells us when the message has been sent instead of the SCD flag. If a NACK is
   // received, clear the NACK bit and command a stop. Otherwise, move on to the read
   // data portion of the communication.
   else if(IntSource == I2C_ARDY_ISRC)
   {
      if(I2caRegs.I2CSTR.bit.NACK == 1)
      {
         I2caRegs.I2CMDR.bit.STP = 1;
         I2caRegs.I2CSTR.all = I2C_CLR_NACK_BIT;
      }
      else if(CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_SEND_NOSTOP_BUSY)
      {
         CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_RESTART;
      }
   }  // end of register access ready

   else
   {
      // Generate some error due to invalid interrupt source
      asm("   ESTOP0");
   }

   // Enable future I2C (PIE Group 8) interrupts
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP8;
}

void pass()
{
    asm("   ESTOP0");
    for(;;);
}

void fail()
{
    asm("   ESTOP0");
    for(;;);
}

//===========================================================================
// No more.
//===========================================================================

点评

这个不是官方例程吗?有点看不懂。  详情 回复 发表于 2013-7-27 09:58
 
 
 

回复

290

帖子

0

TA的资源

纯净的硅(初级)

6
 

回复 5楼liupingfang126 的帖子

这个不是官方例程吗?有点看不懂。
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/6 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表