【STM32H5开发板】4. 使用 I2C 接口连接 MPU6050 陀螺仪
[复制链接]
本帖最后由 大涂涂 于 2023-7-3 16:24 编辑
这次开始对STMH563开发板进行连接外设的应用开发,这里测试使用I2c 接口,I2C 是一个简单的方便的通讯接口,方便连接较低速的外设,通过3根线即可完成对外设的通讯。
这次配合I2C测试的是外部模块是 6轴陀螺仪
这里使用的是 ST7789 芯片的 1.14 寸串口显示屏,使用的是 SPI 接口进行通讯的。
1. MPU6050 陀螺仪外设
MPU6050 是一款6轴陀螺仪,能够测量空间三维轴向加速度和三轴转动时的角速度,有较好的精度和响应速度,芯片还带有温度传感器,用于监测芯片工作温度,可以用于补偿温漂。
MPU6050 模块是通过I2C穿行与主机通讯的,它还可以级联三轴磁力计,用于测量方位角。
除了电源引脚外,只需要 CSL, DSA 两条线就可以使用,非常方便。
而 MPU6050 对I2C 的时序有以下的要求:
2.STMH563 的 I2C 接口资源
I2C 接口的各项参数如下:
可以4路I2C功能完全一致,资源可谓非常丰富。
STMH563 提供4路I2C接口,接口如下图:
2.STMH563 与 MPU6050 硬件链接
这里使用 I2C1 连接 MPU6050 ,连接如下:
PC2--SCL
PC3--SDA
3.软件驱动移植
MPU6050 厂商提供了STM32F103下的驱动,这里可以根据该代码进行移植开发
/*******************************************************************************
//MPU3050 IIC测试程序
*******************************************************************************/
#include "stm32f10x_lib.h"
#include <math.h> //Keil library
GPIO_InitTypeDef GPIO_InitStructure;
ErrorStatus HSEStartUpStatus;
#define uchar unsigned char
#define uint unsigned int
//定义MPU3050内部地址********************
#define WHO 0x00
#define SMPL 0x15
#define DLPF 0x16
#define INT_C 0x17
#define INT_S 0x1A
#define TMP_H 0x1B
#define TMP_L 0x1C
#define GX_H 0x1D
#define GX_L 0x1E
#define GY_H 0x1F
#define GY_L 0x20
#define GZ_H 0x21
#define GZ_L 0x22
#define PWR_M 0x3E
//****************************
#define MPU3050_Addr 0xD0 //定义器件在IIC总线中的从地址,根据ALT ADDRESS地址引脚不同修改
unsigned char TX_DATA[4]; //显示据缓存区
unsigned char BUF[10]; //接收数据缓存区
char test=0; //IIC用到
short T_X,T_Y,T_Z,T_T; //X,Y,Z轴,温度
//************************************
/*模拟IIC端口输出输入定义*/
#define SCL_H GPIOB->BSRR = GPIO_Pin_6
#define SCL_L GPIOB->BRR = GPIO_Pin_6
#define SDA_H GPIOB->BSRR = GPIO_Pin_7
#define SDA_L GPIOB->BRR = GPIO_Pin_7
#define SCL_read GPIOB->IDR & GPIO_Pin_6
#define SDA_read GPIOB->IDR & GPIO_Pin_7
/* 函数申明 -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
void USART1_Configuration(void);
void WWDG_Configuration(void);
void Delay(u32 nTime);
void Delayms(vu32 m);
/* 变量定义 ----------------------------------------------*/
/*******************************/
void DATA_printf(uchar *s,short temp_data)
{
if(temp_data<0){
temp_data=-temp_data;
*s='-';
}
else *s=' ';
*++s =temp_data/100+0x30;
temp_data=temp_data%100; //取余运算
*++s =temp_data/10+0x30;
temp_data=temp_data%10; //取余运算
*++s =temp_data+0x30;
}
/*******************************************************************************
* Function Name : I2C_GPIO_Config
* Description : Configration Simulation IIC GPIO
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/*******************************************************************************
* Function Name : I2C_delay
* Description : Simulation IIC Timing series delay
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_delay(void)
{
u8 i=30; //这里可以优化速度 ,经测试最低到5还能写入
while(i)
{
i--;
}
}
void delay5ms(void)
{
int i=5000;
while(i)
{
i--;
}
}
/*******************************************************************************
* Function Name : I2C_Start
* Description : Master Start Simulation IIC Communication
* Input : None
* Output : None
* Return : Wheather Start
****************************************************************************** */
bool I2C_Start(void)
{
SDA_H;
SCL_H;
I2C_delay();
if(!SDA_read)return FALSE; //SDA线为低电平则总线忙,退出
SDA_L;
I2C_delay();
if(SDA_read) return FALSE; //SDA线为高电平则总线出错,退出
SDA_L;
I2C_delay();
return TRUE;
}
/*******************************************************************************
* Function Name : I2C_Stop
* Description : Master Stop Simulation IIC Communication
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_Stop(void)
{
SCL_L;
I2C_delay();
SDA_L;
I2C_delay();
SCL_H;
I2C_delay();
SDA_H;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_Ack
* Description : Master Send Acknowledge Single
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_Ack(void)
{
SCL_L;
I2C_delay();
SDA_L;
I2C_delay();
SCL_H;
I2C_delay();
SCL_L;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_NoAck
* Description : Master Send No Acknowledge Single
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_NoAck(void)
{
SCL_L;
I2C_delay();
SDA_H;
I2C_delay();
SCL_H;
I2C_delay();
SCL_L;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_WaitAck
* Description : Master Reserive Slave Acknowledge Single
* Input : None
* Output : None
* Return : Wheather Reserive Slave Acknowledge Single
****************************************************************************** */
bool I2C_WaitAck(void) //返回为:=1有ACK,=0无ACK
{
SCL_L;
I2C_delay();
SDA_H;
I2C_delay();
SCL_H;
I2C_delay();
if(SDA_read)
{
SCL_L;
I2C_delay();
return FALSE;
}
SCL_L;
I2C_delay();
return TRUE;
}
/*******************************************************************************
* Function Name : I2C_SendByte
* Description : Master Send a Byte to Slave
* Input : Will Send Date
* Output : None
* Return : None
****************************************************************************** */
void I2C_SendByte(u8 SendByte) //数据从高位到低位//
{
u8 i=8;
while(i--)
{
SCL_L;
I2C_delay();
if(SendByte&0x80)
SDA_H;
else
SDA_L;
SendByte<<=1;
I2C_delay();
SCL_H;
I2C_delay();
}
SCL_L;
}
/*******************************************************************************
* Function Name : I2C_RadeByte
* Description : Master Reserive a Byte From Slave
* Input : None
* Output : None
* Return : Date From Slave
****************************************************************************** */
unsigned char I2C_RadeByte(void) //数据从高位到低位//
{
u8 i=8;
u8 ReceiveByte=0;
SDA_H;
while(i--)
{
ReceiveByte<<=1;
SCL_L;
I2C_delay();
SCL_H;
I2C_delay();
if(SDA_read)
{
ReceiveByte|=0x01;
}
}
SCL_L;
return ReceiveByte;
}
//ZRX
//单字节写入*******************************************
bool Single_Write(unsigned char SlaveAddress,unsigned char REG_Address,unsigned char REG_data) //void
{
if(!I2C_Start())return FALSE;
I2C_SendByte(SlaveAddress); //发送设备地址+写信号//I2C_SendByte(((REG_Address & 0x0700) >>7) | SlaveAddress & 0xFFFE);//设置高起始地址+器件地址
if(!I2C_WaitAck()){I2C_Stop(); return FALSE;}
I2C_SendByte(REG_Address ); //设置低起始地址
I2C_WaitAck();
I2C_SendByte(REG_data);
I2C_WaitAck();
I2C_Stop();
delay5ms();
return TRUE;
}
//单字节读取*****************************************
unsigned char Single_Read(unsigned char SlaveAddress,unsigned char REG_Address)
{ unsigned char REG_data;
if(!I2C_Start())return FALSE;
I2C_SendByte(SlaveAddress); //I2C_SendByte(((REG_Address & 0x0700) >>7) | REG_Address & 0xFFFE);//设置高起始地址+器件地址
if(!I2C_WaitAck()){I2C_Stop();test=1; return FALSE;}
I2C_SendByte((u8) REG_Address); //设置低起始地址
I2C_WaitAck();
I2C_Start();
I2C_SendByte(SlaveAddress+1);
I2C_WaitAck();
REG_data= I2C_RadeByte();
I2C_NoAck();
I2C_Stop();
//return TRUE;
return REG_data;
}
/*
********************************************************************************
** 函数名称 : RCC_Configuration(void)
** 函数功能 : 时钟初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void RCC_Configuration(void)
{
/* RCC system reset(for debug purpose) */
RCC_DeInit();
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{
/* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1);
/* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2);
/* Flash 2 wait state */
FLASH_SetLatency(FLASH_Latency_2);
/* Enable Prefetch Buffer */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
}
/* Enable GPIOA, GPIOB, GPIOC, GPIOD, GPIOE, GPIOF, GPIOG and AFIO clocks */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB , ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD , ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOF , ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOG | RCC_APB2Periph_AFIO , ENABLE);
}
/*
********************************************************************************
** 函数名称 : GPIO_Configuration(void)
** 函数功能 : 端口初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD, ENABLE );
/* Configure USART1 Tx (PA.09) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; // 选中管脚9
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 最高输出速率50MHz
GPIO_Init(GPIOA, &GPIO_InitStructure); // 选择A端口
/* Configure USART1 Rx (PA.10) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //选中管脚10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure); //选择A端口
}
/*
********************************************************************************
** 函数名称 : USART1_Configuration(void)
** 函数功能 : 串口1初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void USART1_Configuration(void)
{
USART_InitTypeDef USART_InitStructure;
USART_ClockInitTypeDef USART_ClockInitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 |RCC_APB2Periph_USART1, ENABLE );
USART_ClockInitStructure.USART_Clock = USART_Clock_Disable; // 时钟低电平活动
USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low; // 时钟低电平
USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge; // 时钟第二个边沿进行数据捕获
USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable; // 最后一位数据的时钟脉冲不从SCLK输出
/* Configure the USART1 synchronous paramters */
USART_ClockInit(USART1, &USART_ClockInitStructure); // 时钟参数初始化设置
USART_InitStructure.USART_BaudRate = 115200; // 波特率为:115200
USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 8位数据
USART_InitStructure.USART_StopBits = USART_StopBits_1; // 在帧结尾传输1个停止位
USART_InitStructure.USART_Parity = USART_Parity_No ; // 奇偶失能
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 硬件流控制失能
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; // 发送使能+接收使能
/* Configure USART1 basic and asynchronous paramters */
USART_Init(USART1, &USART_InitStructure);
/* Enable USART1 */
USART_ClearFlag(USART1, USART_IT_RXNE); //清中断,以免一启用中断后立即产生中断
USART_ITConfig(USART1,USART_IT_RXNE, ENABLE); //使能USART1中断源
USART_Cmd(USART1, ENABLE); //USART1总开关:开启
}
/*
********************************************************************************
** 函数名称 : NVIC_Configuration(void)
** 函数功能 : 中断初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
NVIC_InitStructure.NVIC_IRQChannel = WWDG_IRQChannel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_Init(&NVIC_InitStructure);
}
/*
********************************************************************************
** 函数名称 : WWDG_Configuration(void)
** 函数功能 : 看门狗初始化
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void WWDG_Configuration(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG, ENABLE);
WWDG_SetPrescaler(WWDG_Prescaler_8); // WWDG clock counter = (PCLK1/4096)/8 = 244 Hz (~4 ms)
WWDG_SetWindowValue(0x41); // Set Window value to 0x41
WWDG_Enable(0x50); // Enable WWDG and set counter value to 0x7F, WWDG timeout = ~4 ms * 64 = 262 ms
WWDG_ClearFlag(); // Clear EWI flag
WWDG_EnableIT(); // Enable EW interrupt
}
/*
********************************************************************************
** 函数名称 : Delay(vu32 nCount)
** 函数功能 : 延时函数
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void Delay(vu32 nCount)
{
for(; nCount != 0; nCount--);
}
/*
********************************************************************************
** 函数名称 : void Delayms(vu32 m)
** 函数功能 : 长延时函数 m=1,延时1ms
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void Delayms(vu32 m)
{
u32 i;
for(; m != 0; m--)
for (i=0; i<50000; i++);
}
/*
********************************************************************************
** 函数名称 : WWDG_IRQHandler(void)
** 函数功能 : 窗口提前唤醒中断
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void WWDG_IRQHandler(void)
{
/* Update WWDG counter */
WWDG_SetCounter(0x50);
/* Clear EWI flag */
WWDG_ClearFlag();
}
//************************************************
void USART1_SendData(uchar SendData)
{
USART_SendData(USART1, SendData);
Delayms(1);
}
//初始化MPU3050,根据需要请参考pdf进行修改************************
void Init_MPU3050(void)
{
Single_Write(MPU3050_Addr,PWR_M, 0x80); //
Single_Write(MPU3050_Addr,SMPL, 0x07); //
Single_Write(MPU3050_Addr,DLPF, 0x1E); //±2000°
Single_Write(MPU3050_Addr,INT_C, 0x00 ); //
Single_Write(MPU3050_Addr,PWR_M, 0x00); //
}
//******读取MPU3050数据****************************************
void READ_MPU3050(void)
{
BUF[0]=Single_Read(MPU3050_Addr,GX_L);
BUF[1]=Single_Read(MPU3050_Addr,GX_H);
T_X= (BUF[1]<<8)|BUF[0];
T_X/=16.4; //读取计算X轴数据
BUF[2]=Single_Read(MPU3050_Addr,GY_L);
BUF[3]=Single_Read(MPU3050_Addr,GY_H);
T_Y= (BUF[3]<<8)|BUF[2];
T_Y/=16.4; //读取计算Y轴数据
BUF[4]=Single_Read(MPU3050_Addr,GZ_L);
BUF[5]=Single_Read(MPU3050_Addr,GZ_H);
T_Z= (BUF[5]<<8)|BUF[4];
T_Z/=16.4; //读取计算Z轴数据
BUF[6]=Single_Read(MPU3050_Addr,TMP_L);
BUF[7]=Single_Read(MPU3050_Addr,TMP_H);
T_T=(BUF[7]<<8)|BUF[6];
T_T = 35+ ((double) (T_T + 13200)) / 280;// 读取计算出温度
}
//********串口发送数据***************************************
void Send_data(uchar axis)
{uchar i;
USART1_SendData(axis);
USART1_SendData(':');
for(i=0;i<4;i++)USART1_SendData(TX_DATA[i]);
USART1_SendData(' ');
USART1_SendData(' ');
}
/*
********************************************************************************
** 函数名称 : main(void)
** 函数功能 : 主函数
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
int main(void)
{
RCC_Configuration(); //配置RCC
GPIO_Configuration(); //配置GPIO
USART1_Configuration(); //配置串口1
I2C_GPIO_Config(); //配置IIC使用端口
Delayms(10); //延时
Init_MPU3050(); //初始化MPU3050
while(1)
{
READ_MPU3050(); //读取MPU3050数据
DATA_printf(TX_DATA,T_X);//转换X轴数据到数组
Send_data('X'); //发送X轴数
DATA_printf(TX_DATA,T_Y);//转换Y轴数据到数组
Send_data('Y'); //发送Y轴数
DATA_printf(TX_DATA,T_Z);//转换Z轴数据到数组
Send_data('Z'); //发送Z轴数
DATA_printf(TX_DATA,T_T);//转换温度数据到数组
Send_data('T'); //发送温度数据
USART1_SendData(0X0D); //换行
USART1_SendData(0X0A); //回车
Delayms(5); //延时
}
}
/*************结束***************/
在Keil5 集成开发环境中,把以上代码移植进去,修改头文件后,以及修改I2C的定义,就可以编译过去了。
|