社区首页
技术讨论创新帖
全部新帖
资料区
社区活动
联系管理员
★ 社区积分制度
★ 新手必读
★ 申请版主★
请
登录
后使用快捷导航
没有帐号?
注册
首页
|
电子技术
|
嵌入式
模拟电子
单片机
电源管理
传感器
半导体
电子应用
|
工业控制
物联网
汽车电子
网络通信
医疗电子
手机便携
测试测量
安防电子
家用电子
机器人
新能源
电子头条
|
社区
|
论坛
测评
博客
大学堂
|
下载
|
下载中心
电路图
精品文集
电路图
|
参考设计
|
Datasheet
|
活动
|
直播
datasheet
datasheet
文章
搜索
登录
注册
论坛
切换旧版
电子工程世界-论坛
»
论坛
›
电子技术交流
›
RF/无线
›
时间同步网络
返回列表
发新帖
回复
阅
3372
|
回
0
songbo
当前离线
至上芯片
最后登录
2018-8-14
在线时间
113 小时
威望
65930分
芯积分
-4分
(兑换)
E金币
0枚
(兑换)
(兑换)
好友
0
songbo
1098
帖子
0
TA的资源
至上芯片
+ 好友
私信
楼主
发表于2008-8-12 09:03
只看该作者
时间同步网络
[复制链接]
在通信领域,“同步”概念是指频率的同步,即网络各个节点的时钟频率和相位同步,其误差应符合标准的规定。目前,在通信网中,频率和相位同步问题已经基本解决,而时间的同步还没有得到很好的解决。时间同步是指网络各个节点时钟以及通过网络连接的各个应用界面的时钟的时刻和时间间隔与协调世界时(UTC)同步,最起码在全国范围内要和北京时间同步。时间同步网络是保证时间同步的基础,构成时间同步网络可以采取有线方式,也可以采取无线方式。
时间的基本单位是秒,它是国际单位制(SI单位制)的七个基本单位之一。1967年以前,秒定义均建立在地球的自转和公转基础之上。1967年的国际计量大会(CGDM)给出了新的秒定义:“秒是铯133(133Cs)原子在0K温度基态的两个超精细能级之间跃迁所对应辐射的9 192 631 770个周期所持续的时间”,即“原子秒”(TAI)。目前常用的协调世界时实际上是经过闰秒调整的原子秒。
目前在国际基准和国家基准层面所使用的主要是铯原子钟。铯原子钟已从70年代的磁选态铯原子钟发展到后来的光抽运铯原子钟以及近期的冷原子喷泉铯原子钟,原子秒的不确定度已经提高到2×10-15。中国计量科学研究院建立的冷原子喷泉铯原子钟于2003年底通过了专家鉴定,其频率复现性为5×10-15,已接近国际先进水平。目前商用的小铯钟的频率复现性已达到或优于5×10-13的水平。
其实,在应用层面上并不需要国家基准这样高的时间和频率准确度,不同的应用对准确度的要求是不同的。表1列举了一些典型的应用对时间准确度的要求(这里所谈的时间准确度是应用界面时间相对于协调世界时的误差)。
1988年,ITU-R的前身国际无线电咨询委员会(CCIR)明确提出产业界需要在全世界范围内准确度优于1 μs的时间传输技术。但是,真正在工作层面上实现这样的时间准确度并不是一件容易的事情,至少在目前还没有很好地解决。
二、时间同步网络技术
目前有若干种时间同步技术,每一种技术都各有特色,不同技术的时间同步准确度也有较大差异,如表2所示。
1.
GPS
时间同步技术
GPS时间同步技术是当前比较成熟并在国际上广泛使用的时间同步技术。但是,该技术存在三个问题:第一,GPS系统受美国军方控制,其P码仅对美国军方和授权用户开放。民用C/A码的时间同步精度比P码低两个数量级,而且其安全性没有保障;第二,GPS信号通过无线方式传输,易受外界干扰;第三,GPS接收机的时刻信号是通过标准接口(如RS-232接口)输出的,很多网上在用设备(如
交换机
)并没有这种专用接口。与GPS技术类似的还有前苏联的G
LAN
ASS系统和我国的“北斗”系统。 GLANASS系统由于经济原因,健康星的数量有限,稳定性和可靠性无法保障。“北斗”系统尚未民用,而且无法做到实时覆盖。目前,欧洲实施的“伽里略”计划将成为GPS的替代或备用系统。
2. 短波授时和长波授时时间同步技术
利用无线电发播信号授时已有至少80年的历史,其覆盖范围广,接收和发送设备相对简单,价格相对低廉。与互联网授时技术相比,该技术最大的优点是可以实时地校准本地时钟。一般这种接收设备都具有IEEE-488、RS-232等标准接口,以便于连接。目前国内只有中科院陕西天文台使用短波信号授时。国际上,长波授时主要使用罗兰-C系统,国内发射台设在沿海地区,主要用于军用和导航,尚不适合民用。
3.电话拨号时间同步技术
电话拨号授时(ACTS)使用的设备相对简单,只需要电话线、模拟调制解调器、普通的个人计算机和简单的用户端软件即可。同时,ACTS还提供反馈技术,它可以部分地抵消电话线的传输时延。目前这种技术主要用于校准个人计算机时间,若想用来校准其他本地设备时钟还需要进一步开发设备的接口硬件以及相应的软件。电话拨号授时不具备实时性,通常是免费的,用户端软件也可以通过互联网免费下载。在国内,中国计量科学研究院和中科院陕西天文台都提供这种授时服务。
4.互联网时间同步技术
使用互联网同步个人计算机的时间是十分方便的,目前国内外都免费提供这种服务。微软公司已将网络时间协议(NTP)嵌入到Windows XP操作系统中,只要计算机能联到互联网,就能进行远程计算机时钟校准。标准的NTP采用的是RFC 1350标准?简化的网络时间协议(SNTP)采用的是RFC 1769标准。NTP协议包含一个64 bit的协调世界时时间戳,时间分辨率是200 ps,并可以提供1~50 ms的时间校准精度。NTP也可以估算往返路由的时延差,以减小时延差所引起的误差。但实验表明这种技术在洲际间的时间校准精度只能达到几百毫秒,甚至只能达到秒的量级。其准确度和NTP服务器与用户间的距离有关,一般在国内或区域内可以获得1~50 ms的时间校准精度。目前国际上有几百台一级时间服务器提供这种时间同步服务,其中以美国国家标准技术研究院(NIST)的性能最好。
另外,还有两个相对简单的、低精度的互联网时间协议:Time协议(RFC 868)和Daytime协议(RFC 867),可以提供1s校准精度的广域网时间同步。
5.
SDH
网络时间同步技术
早在10年前,国际上刚开始大规模建设SDH 或
SONET
网络时,人们就提出利用SDH 或SONET网络传送高精度时间编码信号。ITU-R S7组随后正式立项研究,美国、欧洲、日本等国家和地区也进行了大量相关的研究。这种技术的主要原理是把与铯钟同步的时间编码信号嵌入到SDH 或SONET STM-N的复用段开销(MSOH)的空闲字节,信息长度为5bit,其帧结构符合ITU-T G.708建议。因此,只要不阻断MSOH信息,就可以实现长距离传输。该信息可以通过再生段,但是不能通过复用段。用SDH的STM-N信号传送时间频率信息的优点是对抖动的过滤能力强,不受支路指针调整的影响,因此,可以在STM-N端口之间实现时间信息的透明传输。
利用SDH网络传送标准时间的方法有单向法、双向法和共视法。图1是共视法的原理图。共视法是将各节点的时钟同时和标准时钟进行比较,节点时钟之间的时刻值误差通过随后的数据交换进行比较和修正。
STM-N传输时钟信号具备稳定性和复现性,其中,2 000 km的时间传送准确度小于100 ns,50 km的时间传送准确度是10~50ps。但是,它的弱点是不能得到广泛应用。
如何在2.048 Mbit/s端口实现时间信息传输需要进一步的研究,关键要克服复用和解复用过程中指针调整对时间信息的影响。指针调整是以单个字节为单位,一次调整会对支路信号产生8UI的相位跃变,这样的支路信号在通过解同步电路后便会产生相位过渡过程,因而产生了支路单元输出抖动。随着SDH技术的逐步完善,可以采用自适应比特泄漏技术,使由指针调整产生的输出相位抖动得到较大程度的抑制。
目前,信息产业部电信研究院承担并完成的国家科技部项目“利用SDH网络传递标准时间信号”已经在实验室里实现了E1接口(2.048 Mbit/s)标准时间同步信号传输。其原理是把与协调世界时同步的时间编码嵌入2.048 Mbit/s支路信号勤务开销字节或某个固定的业务时隙,同时利用锁相环和软件滤波器滤除抖动,其时间同步的准确度优于5 μs。这样的准确度已经可以为交换机、移动基站控制器等诸多设备或应用提供时间同步服务。进一步的实验和改进有望提高同步精度。图2是利用E1电路双向法进行标准时间传送实验的原理图。
假设A、B之间的2.048 Mbit/s数据流中有空闲时隙TSx,来自B的数据流通过从节点时,在空闲时隙x中写入时间同步请求信息,然后经由SDH网络传送至时间同步主节点,主节点提取时隙x中的时间同步请求,经过处理后经反方向的时隙x回送到从节点,从节点获得时间同步所需的必要信息,完成一次请求/应答过程。
三、建立全球或区域时间同步网存在的问题
主要的问题是用户端设备(如交换机、基站控制器等)没有合适的接口电路,致使用户和GPS接收机、无线电授时接收机、NTP协议等无法相连。目前,已有一些制造商和运营商在研究交换机的接口电路,但由于交换机的制式繁多,进一步的改造尚须时日,而且对在用设备进行改造的成本也非常高。
时间同步网络的标准化也是急需解决的问题,它和现有的同步网标准一样包括网络的技术指标、设备的技术指标以及接口的技术指标等。
基于计算机和工作站的时间同步在技术上已经没有太大问题,如计费的后台处理系统、网管系统等,可以通过互联网的NTP方式进行时间同步,值得注意的是网络的安全性问题,适当的软件升级必不可少。
时间
,
网络连接
,
通信网
此帖出自
RF/无线论坛
点赞
关注
(0)
物联网应用技术
回复
分享
扫一扫,分享给好友
复制链接分享
链接复制成功,分享给好友
举报
提升卡
变色卡
千斤顶
返回列表
发新帖
回复
您需要登录后才可以回帖
登录
|
注册
发表回复
回帖后跳转到最后一页
浏览过的版块
51单片机
活动
更多>>
有奖直播报名中!抢占工业4.1先机,WT·世健科技日等你来!
罗姆有奖直播 | 重点解析双极型晶体管的实用选型方法和使用方法
STM32N6终于要发布了,ST首款带有NPU的MCU到底怎么样,欢迎小伙们来STM32全球线上峰会寻找答案!
免费下载 | 安森美电动汽车充电白皮书,看碳化硅如何缓解“里程焦虑”!
是德科技有奖直播 | 应对未来高速算力芯片的设计与测试挑战
TI 有奖直播 | 使用基于 Arm 的 AM6xA 处理器设计智能化楼宇
安世半导体理想二极管与负载开关,保障物联网应用的稳健高效运行
报名直播赢【双肩包、京东卡、水杯】| 高可靠性IGBT的新选择——安世半导体650V IGBT
开源项目
更多>>
MAX3232电源板TTL
AM1/4S-0507SZ 7.2V 0.25 瓦 DC-DC 转换器的典型应用
使用 Analog Devices 的 LTC6262IMS8 的参考设计
AD7841 八路 14 位、并行输入、电压输出 DAC 的典型应用
LT6656BCS6-2.048、2.048V 2 端子电压基准电流源的典型应用
NCV2002SN1T1G 1V语音带滤波器典型应用电路
AD9650-25EBZ,用于 AD9650BCPZ-25、2 通道、16 位、25MSPS 模数转换器的评估板
使用 Richtek Technology Corporation 的 RT8208E 的参考设计
AM2G-4815DH30Z ±15V 2 瓦 DC/DC 转换器的典型应用
LTC1174-5 正至负 (-5V) 降压转换器的典型应用电路
随便看看
【得捷电子Follow me第3期】任务4:连接WiFi网络|同步网络时间
[i=s]本帖最后由alanlan86于2023-11-1908:25编辑[/i]#准备工作-搭建好ThonnyIDE开发环境,刷好Micropython固件-准备ESP32-C3XIAO开发板一块![](https://filescom/wiki/XIAO_WiFi/front-label-3.png)-SSD1306OLED屏幕一块,通过扩展口将I2C(SCL=7,SDA=6)链 ...
【得捷电子Follow me第1期】任务3:同步网络时间
相较于Pico,PicoW多了一颗无线WIFI模块,可以利用该项特点对网站进行访问获取信息,同时可以与其它物联网设备进行通信。首先,我们进行联网测试,首先连接2.4G热点importnetworkimporttimewlan=networkSTA_IF)wlan.active(True)wlan.connect("aigo_4AC5D3"," ...
【Follow me第二季第3期】 开箱 + RA6M5
简介等待了这么久,快递终于是到了,这块板子被里三层外三层的包裹着。箱子非常大,到最后只拆剩下了一点点。[attach]863648[/attach]板子正面照[attach]863649[/attach]板子附送的线[attach]863650[/attach]这个板子是我所有带网口的板子中唯一一个附送了网 ...
EEWORLD大学堂----财哥说钛丝
KiCad8怎么画异形焊盘?
我们这周被拉闸限电了
月度原创精选评选2018年7月(总第6期)
vhdl语言的时钟
【ESP32-S2-Kaluga-1测评】四、gui加个交互?
跟我学模拟电路
查找数据手册?
搜索
EEWorld Datasheet 技术支持
热门标签
源代码
单片机
放大器
TI
ST
电源
分立器件
传感器
测试测量
模拟
霍尔原理电压传感器
直流并励电动机
绕线式电机
绕线电阻器
锌汞电池
测试探针
电荷双层
倍压整流
泄压阀
MOC3081
相关文章
更多>>
消息称铠侠最快明天获上市批准,市值有望达 7500 亿日元
11 月 21 日消息,路透社报道称,在贝恩资本的支持下,铠侠将于当地时间周五(11 月 22 日)获东京证券交易所上市批准。 根据其 IPO 指示价,铠侠的市值预计达到约 7500 亿日元(当前约
美国政府敲定对格芯 15 亿美元《CHIPS》法案补贴,支持后者提升在美产能
11 月 21 日消息,美国商务部当地时间昨日正式宣布将向格芯 GlobalFoundries 提供合计 15 亿美元(当前约 108.71 亿元人民币)的《CHIPS》法案直接资金,具体补贴发放将
SK 海力士宣布量产全球最高的 321 层 1Tb TLC 4D NAND 闪存,计划 2025 上半年对外出货
11 月 21 日消息,SK 海力士刚刚宣布开始量产全球最高的 321 层 1Tb(太比特,与 TB 太字节不同)TLC(Triple Level Cell)4D NAND 闪存。 据介绍,此 32
UWB上车新花样,无线BMS也能用它?
填补国内空白!中国移动、华为等联合发布首颗GSE DPU芯片
三星电子 NRD-K 半导体研发综合体进机,将导入 ASML High NA EUV 光刻设备
苹果揭秘自研芯片成功原因:竞争对手没法用最新尖端技术
芯片大混战将启:高通、联发科涉足笔记本,AMD 被曝入局手机
Exynos 2600 芯片成关键,消息称三星将打响 2nm 芯片反击战
曾称华为不可能追上!台积电制程遥遥领先,2nm未量产已招大客户抢单
新帖速递
STM32和无源蜂鸣器播放声音的问题
车规级AECQ200介绍,混合铝电解电容器的选择
嵌入式教程_DSP技术_DSP实验箱操作教程:2-28 搭建轻量级WEB服务器实验
OPA847IDBVR运放器国产替代
AG32VF407测试UART
【得捷电子Follow Me第二期】第一章 收到货物的分享
请问这个红外接收头是什么型号?能用哪个型号代替?谢谢
出售全新未拆封ZYNQ 7Z020 FPGA核心板
用在锂电池供电的水表设置上的LORA模块,当有100块水表集中安装在一个楼道内时,节能
请问一下,当某个端口被设置为 RX0后,这个端口的输入输出方向还有必要设置吗
今年怎么这么难,比疫情时还难,三十了面临失业好迷茫
请教稳压管测试问题
【小华HC32F448测评】关于小华半导体的UART中断发送和PRINTF构造和重定向
【BIGTREETECH PI开发板】 HDMI输出测试
【BIGTREETECH PI开发板】+08.音频测试(zmj)
精选推荐
CW32L010学习笔记
帮忙分析下EMI不过的原因
报名剩2天:30套RV1106 Linux开发板(带摄像头),邀您挑战边缘AI~
拯救电源EMI的铁三角:电感、磁珠、电容
开关电源上拉电阻和上拉电阻电路图解
启明云端&触觉智能与您相约2024年慕尼黑国际电子元器件博览会,不见不散!
深度学习框架的相关讨论
[STM32H7R/S]测评 ⑦制作一个NANO EDGE AI STUDIO采集数据使用的Data Logger
启明云端&触觉智能与您相约2024年慕尼黑国际电子元器件博览会,不见不散!
【2024 DigiKey创意大赛】基于树莓派的幸福晚年辅助宝
快速回复
返回顶部
返回列表
论坛首页
版块列表
专业技术中心
TI技术论坛
ST传感器与低功耗无线技术论坛
ADI参考电路
DigiKey得捷技术专区
ADI · 世健工业技术
电子技术交流
嵌入式系统
单片机
国产芯片交流
电机驱动控制
FPGA/CPLD
模拟电子
电源技术
PCB技术
RF/无线
传感器
综合技术交流
下载中心专版
大学堂专版
测评中心专版
创意与实践
电子竞赛
DIY/开源硬件专区
淘e淘
创意市集
行业应用
汽车电子
移动便携
医疗电子
工控电子
安防电子
休息一下
聊聊、笑笑、闹闹
工作这点儿事
为我们提意见&公告
EEWorld颁奖专区
信息发布
最新帖子
最新帖子
最新回复
精华
消灭零回复
测评中心
活动中心
积分兑换
E金币兑换
芯积分
厂商专区
TI技术论坛
ST传感器与低功耗无线技术论坛