3556|2

1098

帖子

0

TA的资源

至上芯片

楼主
 

基于逻辑分析内核的FPGA电路内调试技术 [复制链接]

随着FPGA融入越来越多的能力,对有效调试工具的需求将变得至关重要。对内部可视能力的事前周密计划将能使研制组采用正确的调试战略,以更快完成他们的设计任务。
  “我知道我的设计中存在一个问题,但我没有很快找到问题所需要的内部可视能力。”由于缺乏足够的内部可视能力,调试FPGA基系统可能会受挫。使用通常包含整个系统的较大FPGA时,调试的可视能力成为很大的问题。为获得内部可视能力,设计工程师必须把一些引脚专门用作调试引脚,而不是实际用于设计。哪些工具可用于进行内部FPGA迹线测量?又有哪些技术可用固定的引脚数最大化内部可视能力?
  FPGA设计工程师有两种进行内部迹线测量的方法:
  1. 把结点路由至引脚,使用传统的外部逻辑分析仪测试。
  2. 把一个逻辑分析仪内核插入FPGA 设计,通过JTAG把由内部FPGA存储器保存的迹线捕获路由输出。
  逻辑分析
  FPGA开发者要在设计前期作出重要的判定,他们有意识或无意识地确定如何能够调试他们的设计。得到内部FPGA可视能力的最常用方法是使用逻辑分析仪,把感兴趣的内部结点路由至分析仪探测的引脚。这种方法提供深存储器迹线,在这里问题成因和其影响可能有很大的时间间隔。逻辑分析仪能很好测量可能逃逸仿真的异步事件。一个例子是具有非相关频率的两个或多个时钟域交互影响。逻辑分析仪提供强大的触发,所得到的测量结果能建立与其它系统事件的时间相关。
  传统逻辑分析仪提供状态和定时模式,因此可同步或异步地捕获数据。在定时模式,设计工程师能看到信号跃变间的关系。在状态模式,设计工程师有能力观察相对于状态时钟的总线。当调试总线值至关重要的数据路径时,状态模式是特别有用的。
  有效的真实世界测量需要事先周密的计划。使用传统逻辑分析仪要顾及的主要权衡是把结点路由输出至可探测的引脚。传统逻辑分析仪只能观察到路由至引脚的信号。由于还不知道潜在的电路内调试问题,设计工程师只能把很少几个引脚用于调试。这样少的引脚数可能不足以提供解决手头问题的足够可视能力,从而延误项目的完成。
  保持内部可视能力,同时减少专用于调试引脚数的一种方法是在设计中插入开关多路转换器(见图1)。例如当 FPGA 设计进入电路时,可能需要观察128个内部结点,这就需要一次跟踪32个通道。在这种情况下,可在FPGA设计中实现多路转换器,在给定时间内路由出32 个结点。为编程多路转换器,设计工程师可下载新的配置文件,使用JTAG或通过多路转换器上的控制线经路由切换各信号。在设计阶段,必须仔细规划测试多路转换器插入。否则设计工程师可能止步于不能同时访问需要调试的结点。
图1: 测试多路转换器的插入使设计工程师有能力路由出内部信号的子集,图中为Agilent 16702B所捕获的迹线。
  最小化调试专用引脚数的第二种方法是时分复用(TDM)。TDM复用常用于设计原型,此时把多片FPGA 作为单片ASIC的原型,从而用于最小化调试专用引脚数。这项技术最适合用于处理较慢的内部电路。假定使用8位总线的50MHz设计(时钟沿间为 20ns)需要电路内的可视能力。使用100MHz在第一个10ns期间采样低4bit,在第二个10ns期间采样高4位。这样仅用4个引脚,就可在每个 20ns周期内捕获到全部8位的调试信息。在捕获迹线后,组合相继的4位捕获就可重建8位迹线。TDM复用也有一些缺点。如果用传统逻辑分析仪捕获迹线,触发就变得非常复杂和容易出错。例如在8位码型上的触发就包括把逻辑分析仪设置到寻找跟随规定4位码型后的另一特定4位码型。但逻辑分析仪不知道哪一个4 位是 8位组的开始,因此要在与触发设置相匹配的条件上触发-而不是使用者所中意的触发条件。
  采用TDM复用时得到的测量结果有精确的周期。但设计工程师却丢失了时钟周期间的定时关系信息。通常单端引脚的速度和逻辑分析仪收集迹线的采集速度(状态模式)限制了压缩比。例如如果最大单端引脚速度是200MHz,内部电路运行于高达100 MHz,那么可实现的最大压缩比是2:1。
  随着给定FPGA设计的成熟,它可能会增强和改变。原来专门用于调试的引脚会被用于设计增强。或开始就限制了设计的引脚。另一种调试技术为这类情况带来价值。
  逻辑分析内核
  现在大多数FPGA 厂商也提供逻辑分析(见图2)。这些 IP在合成前或合成后插入FPGA。内核包含触发电路,以及用于设置测量和内部RAM,以保存迹线的资源。插入设计的逻辑分析内核改变了设计的定时,因此大多数设计工程师都把内核永久性地留在设计内。
图2: 从 JTAG 下载逻辑分析仪的配置,图中的例子是 Xilinx ChipScopePro。
点赞 关注
 
 

回复
举报

1098

帖子

0

TA的资源

至上芯片

沙发
 

基于逻辑分析内核的FPGA电路内调试技术

对于电路内配置,可通过JTAG访问内核,以及为观察而把捕获数据传送到PC。如果内核消耗不到5%的可用资源,FPGA 内核就能充分发挥作用。如果 FPGA的尺寸使内核要消耗超过10%的资源,设计工程师在使用这种方法时将会遇到很多问题。
  逻辑分析内核有三项主要优点。
  1. 它们的使用不增加引脚。可通过FPGA 上已有的专门JTAG引脚访问。即使没有其它可用引脚,这种调试方法也能得到内部可视能力。
  2. 简单的探测。探测包括把结点路由到内部逻辑分析仪的输入。不需要担心为得到有效信息,应如何连接到电路板上,也不存在信号完整性问题。
  3. 逻辑分析内核是便宜的。FPGA厂商把他们的业务模型建立于用硅片所获取价值的基础上。所以所用的调试IP 通常能以低于$1,000美元的价格获得。
  使用内部逻辑分析内核也有三方面的影响。
  1. 内核的尺寸限制了在大FPGA中的使用。此外由于内部FPGA存储器用于迹线,使迹线深度很浅。
  2. 设计工程师必须放弃把内部存储器用于调试,存储器会由所作的设计使用。
  3. 内部逻辑分析仪只工作于状态模式。它们捕获的数据与规定的时钟同步,而不能提供信号定时关系。
  混合技术
  一些FPGA厂商已开始与传统逻辑分析仪厂商联合开发组合技术(见图 3)。例如Agilent 和 Xilinx 最近联合为Xilinx的ChipScope开发2M状态深存储器。
图3: 混合内部和传统逻辑分析的第一个例子是Agilent 和 Xilinx联合为ChipScopePro开发的深存储器,通过TDM复用能把引脚数减到最少。
  这一解决方案把内部逻辑分析内核用于触发。在满足内核的触发条件时,内核把迹线信息从经路由的结点传送到内核,再送到引脚。引脚通过 mictor连接器接到一个小的外部跟踪盒。该解决方案融入了TDM复用,以减少调试专用引脚数。根据内部电路的速度,复用压缩可能是1:1,2:1或 4:1。由于迹线未在内部保存,因此IP内核要小于带迹线存储器的逻辑分析IP。
  如何作出决定?
  传统逻辑分析和基于内核的逻辑分析技术都很有用。在选择最适合您调试需要的方案时,事先考虑一些因素将能帮助您作出决定。下面这几个问题能帮助您确定哪种方案最为有效。
  1. 您预计会遇到哪种类型的调试问题?用内部逻辑分析仪能找到较简单的问题,而传统逻辑分析仪则能胜任复杂的故障。
  2. 除了状态模式外,您还需要捕获定时信息吗?如果需要,传统逻辑分析仪能适应这一要求。
  3. 需要多深的迹线?传统逻辑分析仪可在各通道上捕获达64M的迹线,而内部逻辑分析内核更适合浅的迹线。
  4. 有多少引脚可专门用于调试?引脚数越少,使用内部逻辑分析仪就越适合。
  5. 必须为新工具投入多少资金?虽然32通道传统逻辑分析仪的起价为$6K,但内部逻辑分析仪及相随波形观察器的起价还不到$1K。
  6. 研制组能容忍对FPGA设计的冲击吗?内核只能在大的 FPGA上工作,并会改变设计的定时。对所有尺寸和类型的FPGA,传统逻辑分析仪的路由信号输出对设计和工作的影响甚微。
 
 
 

回复

1098

帖子

0

TA的资源

至上芯片

板凳
 

利用智能交流电控制增加家电系统的安全性

如今,全世界至少有60%的家庭用品采用了电子器件。对于在售的电器设备来说,已经完成从原来的机电式到数字控制的升级,目前的系统架构都是围绕着微处理器、分立晶体管和高压可控硅来实现的。
  这一变化某种程度上也是由于节能和节水,以及增加消费者的易用性等方面的需求增长所促进的结果。
  对于家用电器设备制造商来说,性能和成本效益始终是主要的挑战,而市场的全球化和标准也为应对这些挑战增加了难度。正是由于这一点使得交流电源的控制不断发生改变。家电市场上的差异化方面的强烈需求迫使制造商改进系统的电器性能,并提供在正常工作或待机模式下节电或节能方面的新功能。
  性能和安全方面的改进
  当设计一个控制系统时,设计师的目标是追求高的抗干扰性能并增加鲁棒性。IEC61000-4系列标准涉及的是交流电源线方面的电磁兼容要求,例如高压浪涌、快速瞬变冲击以及静电放电。该标准定义了电源控制板抗干扰的等级和具体标准值,并要求逐步增加家电系统的抗干扰能力和鲁棒性。
  例如,在冰箱设计中,通过利用数字控制实现更好的食品保存性能和更高的压缩机效率:即可以实现一个3℃温差的箱体降低20%的功耗。在洗衣机中的一个安全方面的任务是能够收集并分析电气和洗衣参数,避免出现溢水或缺水。能够在电源控制电路的帮助下,实现命令停止加热器件,打开水阀或打开排水泵。
  固态交流开关方面的连续改进
  在早期的电路板上,可控硅满足了紧凑简洁的应用。可控硅的体积比电流小于1安培的继电器小5倍,但却提供了无EMI干扰的开关性能、快速响应时间和数百万次的开关周期可靠性,还有较低功耗的驱动。为了进一步简化电源设计,对可控硅进行了改进,去掉了与标准的可控硅并联的缓冲电路,设计师只需考虑根据载荷关断电流来选择的整流参数(dI/dt)C。
  不过,可控硅仅在其额定阻断电压(VDRM/VRRM)范围内是可靠的。在此范围以外,过压将会使其开关性能永久变坏:一个不受控的过压触发将会激发其结区中的热点。因此,可控硅必须利用外部的抑制器进行保护。
  最关键的约束是在IEC61000-4-5标准中描述的电压浪涌。通常要求能够抗2kV 1.2/50us的浪涌。为了能够抗此40焦耳的浪涌,可以采用以下两种主要方法:钳制—利用像压敏电阻这样的外部电压抑制器来吸收浪涌能量;短路器 (Crowbar)—可控硅安全接通,浪涌能量被消耗到负载阻抗中。
  新型的受保护的可控硅基于双面全平面(bi-face full planar)技术开发,具有优异的内置过压鲁棒性,因此提高了系统的可靠性。当端电压超过雪崩电压时,开关可靠地触发至短路模式。该电压迅速地降到几伏,过压电压被转换成电流流过开关。平面工艺的交流开关随后在周期的末尾重新恢复阻断功能,这与IEC60730标准是一致的。
  ACS在实现可靠性和设计容易性的集成目标同时,还实现了进一步的改进。这种新开关中集成了一个门电平变换器(gate level shifter),使得MCU逻辑电平驱动具有更高的抗电气瞬变干扰的性能。例如,0.8A的开关能保证500V/us的抗浪涌能力,是具有相同门敏感度 (IGT=10mA)对应的可控硅的10倍。
  由于不需要任何的噪声抑制器,从而简化了设计,而且整个控制能够满足IEC61000-4-4标准。在执行水阀的开关控制时,一个0.8A交流开关能够安全地承受切断操作,利用箝位来吸收负载的感应能量。设计所保证的开关能量的容量必须利用一个28H的高感性负载来进行苛刻的测试验证。
  目前,ACS开关的独特门架构使得芯片的背部电气性能更加稳定,这在以前的可控硅架构中是不可能的:交流开关阵列可以封装在单封装内,专门用于像洗碗机这类应用中的集中式制动器驱动。
  冰箱中的节能
  电气控制通过消除启动器(starter)漏电并提供更好的温度控制来改善压缩机效率。启动器是一个正温度系数电阻(PTC),它不断地吸收因其漏电而产生的2.5W能量。如果在启动后用一个固态交流开关关掉PTC,就可以消除此损耗。平稳的温度控制可以减少20%的平均输入功率,并可以将压缩机的通断重复率增加50%。
  压缩机10年的寿命相当于27万次的通断周期,这就能说明使用固态技术的意义。由于能抗2kV的过压和200V/us的瞬态冲击,新型的平面可控硅或ACS提供了所需的断态(off-state)可靠性。以与机电解决方案相近的系统成本,固态技术的突破使得电冰箱或其他制冷设备能够满足A+的耗能标准,带来更好的食品储藏效果,以及没有瞬间放电和EMI干扰。
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/10 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表