本帖最后由 fish001 于 2017-9-23 18:30 编辑
在定点DSP芯片中,采用定点数进行数值运算,其操作数一般采用整型数来表示。一个整型数的最大表示范围取决于DSP芯片所给定的字长,一般为16位或24位。显然,字长越长,所能表示的数的范围越大,精度也越高。如无特别说明,本书均以16位字长为例。 DSP芯片的数以2的补码形式表示。每个16位数用一个符号位来表示数的正负,0表示数值为正,1则表示数值为负。其余15位表示数值的大小。因此 二进制数0010000000000011b=8195 二进制数1111111111111100b=-4 对DSP芯片而言,参与数值运算的数就是16位的整型数。但在许多情况下,数学运算过程中的数不一定都是整数。那么,DSP芯片是如何处理小数的呢?应该说,DSP芯片本身无能为力。那么是不是说DSP芯片就不能处理各种小数呢?当然不是。这其中的关键就是由程序员来确定一个数的小数点处于16位中的哪一位。这就是数的定标。 通过设定小数点在16位数中的不同位置,就可以表示不同大小和不同精度的小数了。数的定标有Q表示法和S表示法两种。表3.1列出了一个16位数的16种Q表示、S表示及它们所能表示的十进制数值范围。 从表3.1可以看出,同样一个16位数,若小数点设定的位置不同,它所表示的数也就不同。例如: 16进制数2000H=8192,用Q0表示 16进制数2000H=0.25,用Q15表示 但对于DSP芯片来说,处理方法是完全相同的。 从表3.1还可以看出,不同的Q所表示的数不仅范围不同,而且精度也不相同。Q越大,数值范围越小,但精度越高;相反,Q越小,数值范围越大,但精度就越低。例如,Q0的数值范围是-32768到+32767,其精度为1,而Q15的数值范围为-1到0.9999695,精度为 1/32768 = 0.00003051。因此,对定点数而言,数值范围与精度是一对矛盾,一个变量要想能够表示比较大的数值范围,必须以牺牲精度为代价;而想提高精度,则数的表示范围就相应地减小。在实际的定点算法中,为了达到最佳的性能,必须充分考虑到这一点。 浮点数与定点数的转换关系可表示为: 浮点数(x)转换为定点数(< xmlnamespace prefix ="v" ns ="urn:schemas-microsoft-com:vml" /> < xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />): 定点数( )转换为浮点数(x): 例如,浮点数 x=0.5,定标 Q=15,则定点数 = ,式中 表示下取整。反之,一个用 Q=15 表示的定点数16384,其浮点数为16384×2-15 =16384/32768=0.5。
表3.1 Q表示、S表示及数值范围 3.2 高级语言:从浮点到定点在编写DSP模拟算法时,为了方便,一般都是采用高级语言(如C语言)来编写模拟程序。程序中所用的变量一般既有整型数,又有浮点数。如例3.1程序中的变量i是整型数,而pi是浮点数,hamwindow则是浮点数组。 例3.1 256点汉明窗计算 int i; float pi=3.14159; float hamwindow[256]; for(i=0;i<256;i++) hamwindow=0.54-0.46*cos(2.0*pi*i/255); 如果要将上述程序用某种定点DSP芯片来实现,则需将上述程序改写为DSP芯片的汇编语言程序。为了DSP程序调试的方便及模拟定点DSP实现时的算法性能,在编写DSP汇编程序之前一般需将高级语言浮点算法改写为高级语言定点算法。下面讨论基本算术运算的定点实现方法。 < xmlnamespace prefix ="st1" ns ="urn:schemas-microsoft-com:office:smarttags" />3.2.1 加法/减法运算的C语言定点模拟设浮点加法运算的表达式为: float x,y,z; z=x+y; 将浮点加法/减法转化为定点加法/减法时最重要的一点就是必须保证两个操作数的定标值一样。若两者不一样,则在做加法/减法运算前先进行小数点的调整。为保证运算精度,需使Q值小的数调整为与另一个数的Q值一样大。此外,在做加法/减法运算时,必须注意结果可能会超过16位表示。如果加法/减法的结果超出16位的表示范围,则必须保留32位结果,以保证运算的精度。 1.结果不超过16位表示范围 设x的Q值为Qx,y的Q值为Qy,且Qx>Qy,加法/减法结果z的定标值为Qz,则 z=x+y ?
= = ?
所以定点加法可以描述为: int x,y,z; long temp; temp=y<<(Qx-Qy); temp=x+temp; z=(int)(temp>>(Qx-Qz)), 若Qx≥Qz z=(int)(temp<<(Qz-Qx)), 若QxQ≤z 例3.2 定点加法 设x=0.5,y=3.1,则浮点运算结果为z=x+y=0.5+3.1=3.6; Qx=15,Qy=13,Qz=13,则定点加法为: x=16384;y=25395; temp=25395<<2=101580; temp=x+temp=16384+101580=117964; z=(int)(117964L>>2)=29491; 因为z的Q值为13,所以定点值z=29491即为浮点值z=29491/8192=3.6。 例3.3 定点减法 设x=3.0,y=3.1,则浮点运算结果为z=x-y=3.0-3.1=-0.1; Qx=13,Qy=13,Qz=15,则定点减法为: x=24576;y=25295; temp=25395; temp=x-temp=24576-25395=-819; 因为Qx,故 z=(int)(-819<<2)=-3276。由于z的Q值为15,所以定点值z=-3276即为浮点值z=-3276/32768?-0.1。 2.结果超过16位表示范围 设x的Q值为Qx,y的Q值为Qy,且Qx>Qy,加法结果z的定标值为Qz,则定点加法为: int x,y; long temp,z; temp=y<<(Qx-Qy); temp=x+temp; z=temp>>(Qx-Qz),若Qx≥Qz z=temp<<(Qz-Qx),若Qx≤Qz 例3.4 结果超过16位的定点加法 设x=15000,y=20000,则浮点运算值为z=x+y=35000,显然z>32767,因此 Qx=1,Qy=0,Qz=0,则定点加法为: x=30000;y=20000; temp=20000<<1=40000; temp=temp+x=40000+30000=70000; z=70000L>>1=35000; 因为z的Q值为0,所以定点值z=35000就是浮点值,这里z是一个长整型数。 当加法或加法的结果超过16位表示范围时,如果程序员事先能够了解到这种情况,并且需要保证运算精度时,则必须保持32位结果。如果程序中是按照16位数进行运算的,则超过16位实际上就是出现了溢出。如果不采取适当的措施,则数据溢出会导致运算精度的严重恶化。一般的定点DSP芯片都设有溢出保护功能,当溢出保护功能有效时,一旦出现溢出,则累加器ACC的结果为最大的饱和值(上溢为7FFFH,下溢为8001H),从而达到防止溢出引起精度严重恶化的目的。 3.2.2 乘法运算的C语言定点模拟设浮点乘法运算的表达式为: float x,y,z; z = xy; 假设经过统计后x的定标值为Qx,y的定标值为Qy,乘积z的定标值为Qz,则 z = xy ? = ? = 所以定点表示的乘法为: int x,y,z; long temp; temp = (long)x; z = (temp×y) >> (Qx+Qy-Qz); 例3.5 定点乘法 设x = 18.4,y = 36.8,则浮点运算值为z =18.4×36.8 = 677.12; 根据上节,得Qx = 10,Qy = 9,Qz = 5,所以 x = 18841;y = 18841; temp = 18841L; z = (18841L*18841)>>(10+9-5) = 354983281L>>14 = 21666; 因为z的定标值为5,故定点 z = 21666即为浮点的 z = 21666/32 = 677.08。 3.2.3 除法运算的C语言定点模拟设浮点除法运算的表达式为: float x,y,z; z = x/y; 假设经过统计后被除数x的定标值为Qx,除数y的定标值为Qy,商z的定标值为Qz,则 z = x/y ? = ?
所以定点表示的除法为: int x,y,z; long temp; temp = (long)x; z = (temp<<(Qz-Qx+Qy))/y; 例3.6 定点除法 设x = 18.4,y = 36.8,浮点运算值为z = x/y = 18.4/36.8 = 0.5; 根据上节,得Qx = 10,Qy = 9,Qz = 15;所以有 x = 18841, y = 18841; temp = (long)18841; z = (18841L<<(15-10+9))/18841 = 308690944L/18841 = 16384; 因为商z的定标值为15,所以定点z = 16384即为浮点 z = 16384/215= 0.5。 3.2.4 程序变量的Q值确定在前面几节介绍的例子中,由于x、y、z的值都是已知的,因此从浮点变为定点时Q值很好确定。在实际的DSP应用中,程序中参与运算的都是变量,那么如何确定浮点程序中变量的Q值呢? 从前面的分析可以知道,确定变量的Q值实际上就是确定变量的动态范围,动态范围确定了,则Q值也就确定了。 设变量的绝对值的最大值为 ,注意 必须小于或等于32767。取一个整数n,使它满足
则有
Q = 15-n 例如,某变量的值在-1至+1之间,即 <1,因此n = 0,Q=15-n = 15。 确定了变量的 就可以确定其Q值,那么变量的 又是如何确定的呢?一般来说,确定变量的 有两种方法:一种是理论分析法,另一种是统计分析法。 1.理论分析法 有些变量的动态范围通过理论分析是可以确定的。例如: (1) 三角函数,y = sin(x)或y = cos(x),由三角函数知识可知,|y|≤1; (2) 汉明窗,y(n) = 0.54-0.46cos [2pn/(N-1)] ,0≤n≤N-1。因为-1≤cos [2pn/(N-≤1,所以0.08≤y(n)≤1.0; (3) FIR卷积。y(n)= ,设 ,且x(n)是模拟信号12位量化值,即有 ≤211,则 ≤211; (4) 理论已经证明,在自相关线性预测编码(LPC)的程序设计中,反射系数 满足下列不等式: ,i= 1,2,…,p, p为LPC的阶数。 2.统计分析法 对于理论上无法确定范围的变量,一般采用统计分析的方法来确定其动态范围。所谓统计分析,就是用足够多的输入信号样值来确定程序中变量的动态范围,这里输入信号一方面要有一定的数量,另一方面必须尽可能地涉及各种情况。例如,在语音信号分析中,统计分析时就必须采集足够多的语音信号样值,并且在所采集的语音样值中,应尽可能地包含各种情况,如音量的大小、声音的种类(男声、女声) 等。只有这样,统计出来的结果才能具有典型性。 当然,统计分析毕竟不可能涉及所有可能发生的情况,因此,对统计得出的结果在程序设计时可采取一些保护措施,如适当牺牲一些精度,Q值取比统计值稍大些,使用DSP芯片提供的溢出保护功能等。 3.2.5 浮点至定点变换的C程序举例本节通过一个例子来说明C程序从浮点变换至定点的方法。这是一个对语音信号(0.3kHz~3.4kHz)进行低通滤波的C语言程序,低通滤波的截止频率为800Hz,滤波器采用19点的有限冲击响应FIR滤波。语音信号的采样频率为8kHz,每个语音样值按16位整型数存放在insp.dat文件中。 例3.7 语音信号800Hz 19点FIR低通滤波C语言浮点程序 #include const int length = 180 void filter(int xin[ ],int xout[ ],int n,float h[ ]);
static float h[19]= {0.01218354,-0.009012882,-0.02881839,-0.04743239,-0.04584568, -0.008692503,0.06446265,0.1544655,0.2289794,0.257883, 0.2289794,0.1544655,0.06446265,-0.008692503,-0.04584568, -0.04743239,-0.02881839,-0.009012882,0.01218354}; static int x1[length+20];
void filter(int xin[ ],int xout[ ],int n,float h[ ]) { int i,j; float sum; for(i=0;i; for (i=0;i { sum=0.0; for(j=0;j-j+n-1]; xout=(int)sum; } for(i=0;i<(n-1);i++) x1[n-i-2]=xin[length-1-i]; }
void main( ) { FILE *fp1,*fp2; int frame,indata[length],outdata[length]; fp1=fopen(insp.dat,"rb"); fp2=fopen(outsp.dat,"wb"); frame=0; while(feof(fp1)==0) { frame++; printf("frame=%d n",frame); for(i=0;i=getw(fp1); filter(indata,outdata,19,h); for(i=0;i,fp2); } fcloseall( ); return(0); } 例3.8 语音信号800Hz 19点FIR低通滤波C语言定点程序 #include const int length=180; void filter(int xin[ ],int xout[ ],int n,int h[ ]); static int h[19]={399,-296,-945,-1555,-1503,-285,2112,5061,7503,8450, 7503,5061,2112,-285,-1503,-1555,-945,-296,399}; static int x1[length+20];
void filter(int xin[ ],int xout[ ],int n,int h[ ]) { int i,j; long sum; for(i=0;i-1]=xin; for (i=0;i { sum=0; for(j=0;j-j+n-1]; xout=sum>>15; } for(i=0;i<(n-1);i++) x1[n-i-2]=xin[length-i-1]; } 主程序与浮点的完全一样。
|