void fir2(const short input[], const short coefs[], short out[])
{
int i, j;
int sum = 0;
for (i = 0; i < 40; i++)
{
for (j = 0; j < 16; j++)
sum += coefs[j] * input[i + 15 - j];
out = (sum >> 15);
}
tot = 4;
for (k = 0; k < 4; k++)
{
max = 0;
for (i = k; i < 44; i += STEP)
{
s = 0;
for (j = i; j < 44; j++)
s = L_mac(s, x[j], h[j - i]);
y32 = s;
s = L_abs(s);
if (L_sub(s, max) > (Word32) 0)
max = s;
}
tot = L_add(tot, L_shr(max, 1));
}
在这个多层循环中一共有三层循环,而最内层的循环的运算量很小,只有一次乘累加操作,
而我们知道C6中一个packet中可以做两个乘累加运算,所以为了增加内部循环的运算,减少外部循环的层数,
我们可以将第一层循环的操作拆开,其负责的运算加入到内部循环中,也就是在内层循环中一次做四次的乘累加运算,
这样将多次操作形成pipeline,提高了运行效率,优化后的C代码如下:
tot = 4;
max0=0;
max1=0;
max2=0;
max3=0;
for (i = 0; i <44; i += STEP) //STEP=4, 11 times cirs
{
//code
for (j=0;j<=40-i;j++)
{s0=(Word32)(_sadd(s0,_smpy(hh[j],xx[j+i])));
s1=(Word32)(_sadd(s1,_smpy(hh[j],xx[j+i+1])));
s2=(Word32)(_sadd(s2,_smpy(hh[j],xx[j+i+2])));
s3=(Word32)(_sadd(s3,_smpy(hh[j],xx[j+i+3])));
}
}
//code
3、优化方法说明:
C6000编译器提供的intrinsic 可快速优化C代码,intrinsic用前下划线表示同调用函数一样可以调用它,即直接内联为C6000的函数。
例如,在上例的源代码中没有使用intrinsics,每一行C代码需多个指令周期,在改编后的代码中,每一行代码仅需一个指令周期。
例如,
“aReg_ll = (Word40)_mpyu(L_var1, L_var2)>>16”中“_mpyu”就是一个intrinsics函数,它表示两个无符号数的高16位相乘,
结果返回。C6000支持的所有intrinsics指令及其功能参见《TMS320C6000系列DSP的原理与应用》一书的第265、266页,
该书还提供了另外的例子。这些内联函数定义在CCS所在的C6000/CGTOOLS/Include目录下的C6X.h文件中。
下面这个例子是C6000的“Programmer's Guide”上提取的使用intrinsics优化C代码的例子。
源代码:
int dotprod(const short *a, const short *b, unsigned int N)
{
int i, sum = 0;
for (i = 0; i < N; i++)
sum += a * b;
return sum;
}
改编后代码:
int dotprod(const int *a, const int *b, unsigned int N)
{
int i, sum1 = 0, sum2 = 0;
for (i = 0; i < (N >> 1); i++)
{
sum1 += _mpy (a, b);
sum2 += _mpyh(a, b);
}
return sum1 + sum2;
}
四、
1、源代码:
void fir_fxd1(short input[], short coefs[], short out[])
{
int i, j;
for (i = 0; i < 40; i++)
{
for (j = 0; j < 16; j++)
out[i*16+j]= coefs[j] * input[i + 15 - j];
}
}
2、改编后的代码:
void fir_fxd2(const short input[], const short coefs[], short out[])
{
int i, j;
for (i = 0; i < 40; i++)
{
for (j = 0; j < 16; j++)
out[i*16+j]= coefs[j] * input[i + 15 - j];
}
五、
1、源代码:
void vecsum(short *sum, short *in1, short *in2, unsigned int N)
{
int i;
for (i = 0; i < N; i++)
sum = in1 + in2;
}
2、改编后的代码:
void vecsum6(int *sum, const int *in1, const int *in2, unsigned int N)
{
int i;
int sz = N >> 2;
_nassert(N >= 20);
for (i = 0; i < sz; i += 2)
{
sum = _add2(in1 , in2);
sum[i+1] = _add2(in1[i+1], in2[i+1]);
}
}
3、优化方法说明:
源代码中,函数变量的定义是 short *sum, short *in1, short *in2, 改编后的代码函数变量是
int *sum, const int *in1, const int *in2, 整数类型由16位改编成32位,这时使用内联指令“_add2”一次可以完成两组16位整数的
加法, 效率提高一倍。注意这里还使用了关键字const和内联指令_nassert优化源代码。
八、
1、源程序
for (k = 0; k < NB_PULSE; k++)
{
i = codvec[k];
j = sign;
index = mult(i, Q15_1_5);
track = sub(i, extract_l(L_shr(L_mult(index, 5), 1)));
if (j > 0)
{
if (i < l_subfr) code = add(code, 4096);
codvec[k] += (2 * L_SUBFR);
}
else
{
if (i < l_subfr) code = sub(code, 4096);
index = add(index, 16);
}
if (indx[track] < 0)
{
indx[track] = index;
}
else
{
if (((index ^ indx[track]) & 16) == 0)
{
if (sub(indx[track], index) <= 0)
{
indx[track] = shl((indx[track] & 16), 3)
+ shr(extract_l(L_mult((indx[track] & 15), NB_POS)), 1) + (index & 15);
}
else
{
indx[track] = shl((index & 16), 3)
+ shr(extract_l(L_mult((index & 15), NB_POS)), 1) + (indx[track] & 15);
}
}
else
{
if (sub((indx[track] & 15), (index & 15)) <= 0)
{
indx[track] = shl((index & 16), 3)
+ shr(extract_l(L_mult((index & 15), NB_POS)), 1) + (indx[track] & 15);
}
else
{
indx[track] = shl((indx[track] & 16), 3)
+ shr(extract_l(L_mult((indx[track] & 15), NB_POS)), 1) + (index & 15);
}
}
}
}
2、优化后的程序
for (k = 0; k < 8; k++)
{
i = codvec[k];
j = sign;
index = _smpy(i, 6554)>>16;
track = i - index*5;
con = (j > 0);
codvec[k] = codvec[k] + 110*con;
index = index + (!con)*16;
conn = (i < l_subfr);
cono = (j > 0)? 1:-1;
code = code + 4096*conn*cono;
n0 = index;
t0 = indx[track];
n1 = n0&16;
t1 = t0&16;
n2 = n0&15;
t2 = t0&15;
tmp0 = (_sshl(n1,19)>>16) + n2*NB_POS + t2;
tmp1 = (_sshl(t1,19)>>16) + t2*NB_POS + n2;
conp = (((n1 == t1)&&(t0 > n0))||((n1 != t1)&&(t2 <= n2)));
tmp = conp*tmp0 + (!conp)*tmp1;
if (t0 < 0)
indx[track] = n0;
else
indx[track] = tmp;
}
3、优化说明
源程序中在循环中含有许多的if结构,在优化时对if结构首先进行化简,
再将化简后的if结构用条件运算表达式进行改写,最后使循环可以Pipeline。
九、
1、源程序
for (i = 0; i < n; i++)
{
max = -32767;
for (j = 0; j < n; j++)
{
if (sub (tmp2[j], max) >= 0)
{
max = tmp2[j];
ix = j;
}
}
tmp2[ix] = -32768;
tmp = ix;
}
2、优化后的程序
if (n0>n1) {temp=n0;n0=n1;n1=temp;}
if (n1>n2) {temp=n1;n1=n2;n2=temp;}
if (n2>n3) {temp=n2;n2=n3;n3=temp;}
if (n3>n4) {temp=n3;n3=n4;n4=temp;}
if (n0>n1) {temp=n0;n0=n1;n1=temp;}
if (n1>n2) {temp=n1;n1=n2;n2=temp;}
if (n2>n3) {temp=n2;n2=n3;n3=temp;}
if (n0>n1) {temp=n0;n0=n1;n1=temp;}
if (n1>n2) {return n1;}
3、优化说明
源程序也为一个求中值的问题,由于已知循环次数固定为5,因此将循环展开使用if语句直接求取中值。
十、
1、源程序
static Word16 Bin2int (Word16 no_of_bits, Word16 *bitstream)
{
Word16 value, i, bit;
value = 0;
for (i = 0; i < no_of_bits; i++)
{
value = shl (value, 1);
bit = *bitstream++;
if (sub (bit, BIT_1) == 0)
value = add (value, 1);
}
return (value);
}
for (i = 0; i < prmno[mode]; i++)
{
prm = Bin2int (bitno[mode], bits);
bits += bitno[mode];
}
2、优化后的程序
value = 0;
bitsp = bits;
bitnop= &bitno[mode][0];
j = *bitnop++;
j1 = *bitnop++;
j2 = *bitnop++;
j3 = *bitnop++;
j4 = *bitnop++;
_nassert(loop[mode]>=35);
for (i = 0; i < loop[mode]; i++)
{
value = value*2 + *bitsp++;
j--;
if (j == 0)
{
*prm++ = value;
value = 0;
j = j1;
j1 = j2;
j2 = j3;
j3 = j4;
j4 = *bitnop++;
}
}
3、优化说明
源程序按照数据位流定义取出参数,为双重循环结构,优化中采用重新根据位流的bit长度定义循环次数,
化简为单重循环,然后优化循环,去除boundary,使pipeline的数目最小。