在一些对三极管开关电路动作速度要求较高的环境,例如通讯领域,要求开关电路需要具备快速切换动作的特性,因此我们也就必须采取相应的改良措施,以加 快三极管开关的切换速度。下图中,图1为一种常见的切换速度改良方式,此方法只须在RB电阻上并联一只加速电容器。因此,当Vin由零电压往上升并开始送 电流至基极时,电容器由于无法瞬间充电,故形同短路,然而此时却有瞬间的大电流由电容器流向基极,因此也就加快了开关导通的速度。稍后待充电完毕后,电容 就形同开路,同时,这样做还不会影响三极管的正常工作。
图1 加了加速电容器的三极管开关电路
当开关电路采用了这种加入加速电容器的辅助电路后,一旦输入电压由高准位降回零电压准位时,电容器会在极短的时间内即令基射极接面变成反向偏压,而使 三极管开关迅速切断。在这一工作运行过程中,三极管开关之所以能够快速被切断,是由于电容器的左端原已充电为正电压,因此在输入电压下降的瞬间,电容器两 端的电压无法瞬间改变仍将维持于定值,因此输入电压的下降立即使基极电压随之而下降,因此令基射极接面成为反向偏压,而迅速令三极管截止。适当的选取加速 电容值可使三极管开关的切换时间减低至几十分之微秒以下,大多数的加速电容值约为数百个微微法拉(pF)。
在使用这种加入加速电容器的辅助电路,为三极管开关电路加快切断速度时,有一个需要注意的问题是,有的时候三极管开关的负载并非直接加在集电极与电源 之间,而是会接成图2的方式。从图2中我们可以看到,这种接法和小信号交流放大器的电路非常接近,只是少了一只输出耦合电容器而已。这种接法和正常接法的 动作恰好相反,当三极管截止时,负载获能,而当三极管导通时,负载反被切断,这两种电路的形式都是常见的,因此工程师需要综合判断自己所采取的加速设置是 否符合当前电路设计的需要。
图2 将负载接于三极管开关电路的改进接法
还有一种情况是三极管开关电路在应用过程中比较 经常遇到的。我们假设在图2中的三极管开关加上了电容性负载(假定其与RLD并联),那么在三极管截止后,由于负载电压必须经由RC电阻对电容慢慢充电而 建立,因此电容量或电阻值愈大,时间常数便愈大,而使得负载电压之上升速率愈慢。然而,在某些应用中,这种现象是不允许存在的,因此在面对这种情况时我们 就必须采用图3所提供的图腾式改良电路进行改良设计了。
图3 图腾式三极管开关电路 首先来解释一下图腾式电路的含义。所谓的图腾式电路,指的是将 一只三极管直接迭接于另一个三极管之上所构成的电路模式,这一电路也因该种结构而得名。在图腾式电路中,如果想要让负载获能,那就必须使Q1三极管导通, 同时使Q2三极管截断,这样一来负载便可经由Q1而连接至VCC上。如果想要使负载去能,必须使Q1三极管截断,同时使Q2三极管导通,如此负载将经由 Q2接地。由于Q1的集电极除了极小的接点电阻外,几乎没有任何电阻存在,如上图图3所示,因此负载几乎是直接连接到正电源上的,也因此当Q1导通时,就 再也没有电容的慢速充电现象存在了。所以可说Q1将负载拉起,而称之为“挽起三极管”,Q2则称为拉下三极管。
在上图图3所提供的图腾式三极管开关电路中,我们可以看到,该电路系统左半部的输入控制电路,负责Q1和Q2三极管的导通与截断控制,但是必须确保 Q1和Q2使不致同时导通,否则将使VCC和地之间经由Q1和Q2而形同短路,果真如此,则短路的大电流至少将使一只三极管烧毁。因此图腾式三极管开关绝 对不能采用并联方式来使用,否则只要图腾上方的三极管Q1群中有任一只导通,而下方的Q2群中又恰好有一只导通,电源便经由导通之Q1和Q2短路,而造成 严重的后果。
|