非隔离AC-DC驱动电源的设计--安森美半导体
[复制链接]
非隔离降压型电源是现在普遍使用的电源结构,几乎占了日光灯电源百分之九十以上。很多人都以为非隔离电源只有降压型一种,每每一说到不隔离,就想到降压型,就想到说对灯不安全(指电源损坏)。其实降压型不只是一种,还有两种基本结构,即升压,和升降压,即BOOSTANDBUCK-BOOST,后两种电源即使损坏。不会影响到LED的好处。降压式电源也有其好处,它适合用于220,但不适用于110,因为110V本来电压就低,一降就更低了,那样输出的电流大,电压低,效率做不太高。降压式220V交流,整流滤波后约三百伏,经过降压电路,一般将电压降到直流150V左右,这样即可实现高压小电流输出,效率可以做得较高。
一般用MOS做开关管,做这种规格的电源,可以做到百分之九十那样差不多,再往上也困难。原因很简单,芯片一般自损会有0.5W到1W,而日光灯管电源不过就是10W左右。所以不可能再往上走。现在电源效率这个东西很虚,很多人都是吹,实际根本达不到。常见有些人说什么3W的电源效率做到百分之八十五了,而且还是隔离型的。
告诉大家,即便是跳频模式的,空载功耗最小,也要0.3W,还什么输出3W低压,能到百分之八十五,其实有百分之七十算很好了,反正现在很多人吹牛不打草稿,可以忽悠住外行,不过现在做LED的懂电源的也不多。我说过,要效率高,首先就要做非隔离的,然后输出规格还要高压小电流,可以省去功率元件的导通损耗,所以象这种LED电源的主要损耗,一就是芯片自有损耗,这个损耗一般有零点几W到一W的样子,还有一个就是开关损耗了,用MOS做开关管可以显着减小这个损耗,用三极管开关损耗就大很多。
所以尽量不要用三极管。还有就是做小电源,最好不要太省,不要用RCC,因为RCC电路一般的厂家根本做不好质量,其实现在芯片也便宜,普通的开关电源芯片,集成MOS管的,最多不过两元钱,没必要省那么一点点,RCC只省点材料费,实际上加工返修等费用更高,到头到反而得不偿失的那样。
降压式电源的基本结构就是将电感和负载串入300V高压中,开关管开关的时候,负载即实现了低于300V的电压,具体的电路很多,网上也很多,我也不画图再说了。现在9910,还有一般的市场上的恒流IC基本都是用这种电路来实现的。但这种电路就是开关管击穿的时候,整个LED灯板就玩完,这应该算是最不好的地方了。因为当开关管击穿的时候,整个300V的电压就加在灯板上,本来灯板只能承受一百多伏电压,现在成了三百伏了,这种情况一发生。LED肯定要烧掉。
所以很多人说非隔离的不安全,其实就是说降压的,只是因为一般非隔离的绝大多数是降压的,所以认为非隔离的损坏一定要坏LED.其实另外两种基本的非隔离结构,电源损坏,不会影响LED的。降压式电源要设计成高压小电流,效率才能高,细说一下,为什么?因为高压小电流,可以让开关管电流的脉宽大一些,这样峰值电流就小一些,还有就是,对电感的损耗也小一些,通过电路结构就可以知道,电路不方便画,具体也难以再叙述下去了。
就随便总结一下,降压电源的好处是,适合于220高压输入使用,以使得功率器件承受的电压应力小,适合做大电流输出,比如做100MA电流,比后两种方式来的轻松,效率要高。效率算比较高的,对电感的损耗较小,但对开关管损耗大一些,因为所有经过负载的功率必须要经过开关管传输,但输出的功率,只有一部分经过电感,如300V输入,120V输出的降压型电源,只有180V的部分要经过电感,120V的部分是直接导通进入负载的,所以说对电感损耗比较小,但输出的功率,全部要经过开关管转化。
低功率AC-DC LED驱动器 在一些低功率AC-DC非隔离LED照明应用中,既要求高功率因数,又要求支持调光,如模拟、数字(PWM)或三端双向可控硅开关器件(TRIAC)调光等。这些应用既可以采用安森美半导体的NCL30000功率因数校正TRIAC可调光LED驱动器,也可以采用LV5026/29系列高功率因数可调光LED驱动器。
LV5026是一款可调光高功率因数方案,兼容TRIAC调光,如图2所示。
图2:LV5026兼容TRIAC调光方案
图3是采用LV5026的非隔离可调光高功率因数LED驱动器方案。该电路可驱动大功率场效应管电路、采用步进控制方式、具有频率振荡功能;其基准电压可从外部调整,兼容数字调光和模拟调光;此外还内置软启动、过电流保护电路、过热保护电路和过电压保护电路。
图3:LV5026非隔离可调光高功率因数LED驱动器方案 安森美半导体LV502x系列器件的PWM控制架构可以降低EMI。2级驱动方式可以削减电流噪声,实现优于竞争器件的低EMI效果。另外,采用非隔离拓扑结构的LED驱动器具有电路中磁性元件尺寸更小、能效更高、元件数量更少以及总物料单(BOM)成本更低的综合优势,还可以用机械设计来满足安规要求。
如果客户需要同时支持TRIAC调光、PWM调光及模拟调光,则应选择LV5026M。为了改善功率,在使用LV5026M的LED照明驱动电路时,改变一下电路构成就可以提高功率因数。有两种方法可以做到这一点。一种是减小AC电压平滑用电容器,扩大AC电流的导通角;另一种是控制功率场效应管中流过的电流与输入AC电压的比例。提高功率因数的电路配线如图3所示。不同点是,以前REF端子是施加一定的电压,现在是输入电压Vin(AC)平滑后的电压经电阻分压后施加在REF端子上。
采用LV5026M的3 W非隔离降压电路设计如图4所示。若只需要支持PWM及模拟调光,则可选择LV5029MC。
图4:改善功率因数校正的工作原理
2) 大功率AC-DC LED驱动器 在大功率方面,两段式NCL30051功率因数校正(PFC)与半桥谐振LLC集成方案是很好的选择。安森美半导体新的NCL30051离线式LED驱动器与新的NCL30160可调光恒流降压LED驱动器搭配,可为空间受限且需要高能效的高亮度LED驱动器应用提供极佳方案。
NCL30051是一款专用LED驱动集成电路(IC),能够为降压直流-直流(DC-DC)转换器/LED驱动器(如NCL30160)提供恒定电压。该器件集成了一个临界导电模式(CrM)PFC控制器及一个半桥谐振控制器,并内置600伏(V)驱动器,针对离线电源应用进行了优化,具备了所有实现高能效、小外形因数设计所需的特性。NCL30051的半桥段采用固定频率工作。该器件通过调节PFC段的输出电压来稳压,且集成了反馈环路开路保护,再加PFC过压和欠压检测机制,以及可以最高设定为75千赫兹(kHz)的可调节频率振荡器。
NCL30160则是一款用于大功率LED的开关稳压器,采用基于NCL30051的驱动所提供的恒定电压去降低电压,从而为LED串提供恒定电流。通过利用仅55毫欧(mΩ)的低导通阻抗内部MOSFET及以100%占空比工作的能力,能够提供能效高达98%的方案。
该恒流器件以6.3 V至40 V的输入电压范围工作,最高1.4兆赫兹(MHz)的高开关频率使设计人员可采用更小的外部元件,帮助将电路板尺寸减至最小及成本降至最低。NCL30160包含迟滞控制特性,在负载瞬变期间提供快速的响应,省下小型信号控制环路补偿元件。其保护特性包括可用电阻设定LED电流、LED短路保护、欠压锁定及热关闭。
NCL30051与NCP30160 IC搭配工作可以最少的外部元件简化电源电路设计。这种架构使芯片组能够集成在更紧凑及更高性价比的LED照明电源中,用于户外照明(如街灯、停车场灯)及汽车照明等通用照明应用。图4是NCL30051简化应用电路图。
为了让设计师迅速获得电路图及可供订购的物料单(BOM),简化SIMetrix/SIMPLIS仿真及加速设计,安森美半导体还提供电子设计辅助工具——GreenPoint设计仿真工具;另外还提供NCL30051LEDGEVB评估板,其最大输出功率限制为100 W,但在改变元件条件下最大可输出250 W功率。它可以帮助客户评估功率因数、能效、保护特性、调光功能等特性。 总结 LV5026M支持隔离/非隔离拓扑结构,提供更高能效,在主电源输入电压及LED负载范围内提供紧密的LED稳压,能够提供高功率因数及低总谐波失真(THD),可用于切相(TRIAC)调光器的低功率应用。NCL30051是极佳的高能效方案,控制架构简单,基于新颖的谐振模式控制方法,采用经证明的CrM固定导通时间PFC控制方法,集成了固定频率半桥、高压门驱动器,极适合用于固定电压LED电源及恒流LED驱动器,能用于30 W至200 W以上功率应用。
[ 本帖最后由 yet 于 2013-7-27 21:01 编辑 ]
|