向量:
向量是由数字构的一维数组。在数学上,向量有水平和垂直两种列式方法。如果是水列式,那么就一个行向量。
x=[x0,x1,x2]
其中x是由3个元素构成的行向量。
在数学上,我们通常将向量表示为列向量y=
y,为二维向量。
在代码中,我们通常使用一维数组来表示向量
>>> import numpy as np
>>> x = np.array([1,2,3])
>>> print(x)
[1 2 3]
>>> print(x.reshape((3,1)))
[[1]
[2]
[3]]
>>>
上述代码中通过调用reshape函数,将一个三元行向量转换成了列向量。
向量中的成员通常表示向量在一组坐标系中沿各个坐标轴的长度。例如,一个三元向量可以表示三维空间中的一个点。在这个三元向量中,x是沿X轴的长度,y是沿y轴的长度,z是沿z轴的长度,这就是笛卡儿坐标系用于唯一地表示整个三维空间中所有的点,比如:
x=(x,y,z)
然后,在深度学习和机器学习领域,向量的各个成同之间通常没有严格的几何位置关系。它们用来表示特征,也就是描述样本特性的某些量。模型需要通过这些量来得到有用的输出,如分类标签或回归值。尽管如此,用来表特征向量(特征的集合)的特征有时也是有几何含义的。例如,一些机器学习算法(如k近邻算法)会把特征解读为几何空间中的坐标。
在深度学习中,问题的特征空间是指由所有可能的输入构成的集合。提供给模型的训练样本需要能够有效地表示模型在使用阶段的特征空间。从这个角度讲,特征向量就是n维空间的一个点,n等于特征向量中特征的数量。
|