本帖最后由 火辣西米秀 于 2024-9-10 09:25 编辑
完整的电化学储能系统主要由电池组、电池管理系统(BMS)、能量管理系统(EMS)、储能变流器(PCS)以及其他电气设备构成。
在储能系统中,电池组将状态信息反馈给电池管理系统BMS,BMS将其共享给能源管理系统EMS和储能变流器PCS;EMS根据优化及调度决策将控制信息下发至PCS与BMS,控制单体电池/电池组完成充放电等。
电池管理系统BMS:担任感知角色,主要负责电池的监测、评估、保护以及均衡等;
能量管理系统EMS:担任决策角色,主要负责数据采集、网络监控和能量调度等;
储能变流器PCS:担任执行角色,主要功能为控制储能电池组的充电和放电过程,进行交直流的变换。
BMS全称是Battery Management System,它是配合监控储能电池状态的设备,主要就是为了智能化管理及维护各个电池单元;防止电池出现过充电和过放电现象,延长电池的使用寿命;实时采集电池的状态信息,上传数据到后台实现远程监控。它是储能电池系统的核心子系统之一。
BMS系统三层架构:
1)底层:从控BMU——单体电池管理层。由电池监控芯片及其附属电路构成,负责采集单体电池的各类信息,计算分析电池的SOC(电池剩余容量)和SOH(电池健康状态),实现对单体电池的主动均衡,并将单体异常信息上传给主控。
2)中间层:主控BCU——电池组管理层。收集BMU上传的各种单体电池信息,采集电池组信息。计算分析电池组的SOC和SOH。
3)上层:总控——电池簇管理层。负责系统内部的整体协调以及与EMS、PCS的外部信息交互,根据外部请求控制整个BMS系统的运行过程。
此功能是为了修正串联电池组中由于电池单体自身工艺差异引起的电压、或能量的离散性,避免个别单体电池因过充或过放而导致电池性能变差甚至损坏情况的发生,使得所有个体电池电压差异都在一定的合理范围内。要求各节电池之间误差小于±30mv。
单体电池过压、欠压、过温报警,电池组过充、过放、过流报警保护,切断等。
采集的数据主要有:单体电池电压、单体电池温度、组端电压、充放电电流,计算得到蓄电池内阻。
根据实时测量蓄电池模块电压、充放电电流、温度和单体电池端电压、计算得到的电池内阻等参数,通过分析诊断模型,得出单体电池当前容量或剩余容量(SOC)的诊断,单体电池健康状态(SOH)的诊断、电池组状态评估,以及在放电时当前状态下可持续放电时间的估算。
电池模块在充电过程中,将产生大量的热能,使整个电池模块的温度上升,因而,BMS的热管理应运而生。
若遇异常,BMS会给出故障诊断告警信号,通过监控网络发送给上层控制系统,判断故障电池及定位,给出告警信号,并对这些电池采取适当处理措施。而其中电池旁路或能量转移等技术的,能使单体电池发生故障时,以避免对整组电池运行产生影响。
激光焊接工艺的应用
激光焊接是指利用激光束的热量对工件进行熔化和熔合的一种焊接方式。具体来说就是利用激光束高功率能量和优异的方向性进行工作,通过激光焊接机中的聚光系统将激光束聚焦在很小的区域内,在很短的时间内使焊接处形成能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。
在锂电池生产的环节,如电芯制造、PACK制造,电池管理系统(BMS)的连接过程中,应用激光焊接工艺,极大提高了产品制造的精密度、效率性、可靠性。
BMS设备是构建云边结合的储能系统大数据平台与深度挖掘分析功能的重要组成部分。
目前,BMS功能已经由监测、通讯、保护、显示、存储等基本功能向电池系统安全诊断和长寿命运维、系统经济性指标诊断等高级功能发展。从技术上看,主动均衡技术将成为标准,大数据、人工智能等技术被应用到电池状态算法中;未来低端BMS供应商的生存空间将越来越小。智慧运维、高级功能等是未来各厂商之间产生差异化竞争的核心要点
边:以BMS为基础发展云边协同,充分发挥BMS的数据汇聚能力,在站级设备端实现电池系统实时数据的采集、分析、状态诊断和评估,实现数据的清洗和预加工。
云:云端基于更多站端的数据,实现多维度时空数据挖掘、提炼、精加工,实现更详细、更全面的电池运行状态、安全状态、储能系统可靠性的评估,动态优化BMS运行策略及算法模型并下设至设备端,达到最佳安全和经济性的运维模式,实现智慧运维,并为能源汇聚/分配/交易提供数据支撑,为储能系统的价值实现提供保障。
|