1132|4

1668

帖子

0

TA的资源

五彩晶圆(初级)

楼主
 

几款电动汽车的热管理系统介绍 [复制链接]

本帖最后由 火辣西米秀 于 2024-5-23 08:20 编辑

提到热管理,对于大多数人而言,第一反应就是车内空调使用感受。然而对于整车而言,除了车内空调的使用,还包括对高压系统的加热保温或是散热降温,以及前挡风玻璃的除雾加热等等。

 

它就像汽车的贴心保护者,静静的管理车上各零部件的温度状态,让部件尽可能处在一个舒适的温度环境,保持零部件的最佳性能发挥,间接的影响车辆的动力性和经济性的优秀表现。

下面来看看各主机厂车型的热管理系统。

 

01.小鹏P7的热管理系统

 

整个热管理系统的水路是相连通的,通过三通和四通水阀,实现串联和并联模式,整个热管理系统的框图如下图所示。

 

 

▲图1 小鹏P7的热管理系统整体框图

1.空调热舒适性系统,主要是空调制热、制冷、除湿、前挡除雾、车内温度以及空气循环的智能调节等。

2.电池加热冷却系统,应用1个四通换向阀, 2个三通比例阀, 实现电池和电机回路的串并联, 从而实现余热回收和电池中温散热功能。

高温时, 依靠电池换热器, 靠制冷剂给电池强制冷却。中温时, 依靠四通换向阀将电池回路与电驱回路串联, 通过前端低温散热器散热, 可以节省电动压缩机功耗。低温时依靠三通比例阀将低温散热器短路, 电池和电机回路串联, 回收电机余热给电池保温。超低温时依靠三通比例阀,通过水水换热器将电池回路加热, 实现给电池快速升温。

3.电驱冷却系统, 依靠电动水泵, 通过低温散热器, 依次给电机控制器、电机进行散热。

4.XPU、大屏主机散热, 通过温度及温升速率判断开启电机水泵, 从电机回路分流一部分流量到XPU、大屏主机水冷板进行冷却, 通过散热器或旁通进行散热。

5.补水排气系统,通过膨胀水壶与电池、电机、暖风回路连接, 分别为三个回路补水, 电池和电驱路共用一个分水箱排气、暖风回路用一个分水箱排气。

各个模块的热管理的具体策略如下:

1.电机冷却控制原理

电机冷却控制是由VCU来控制的,VCU通过判断电机回路中某一器件温度过高则进入电机冷却, 调节电机回路水泵转速、电子风扇转速, HVAC调整三通比例水阀1位置到散热器。其开启温度值:当电机温度高于75℃, IPU高于45℃, DCDC高于60℃, OBC高于50℃时开启电机冷却系统。三通阀通散热器。

整个冷却回路为:电机回路水泵→电机系统→三通比例水阀1→散热器/旁通→四通换向水阀→电机回路水泵。

 

 

▲图2 电机冷却控制原理

2.电池冷却控制原理

电池冷却又分为两种,其中一种为充电场景下,在该模式下BMS判断电池冷却需求, VCU判断是否满足电池冷却的条件, HVAC综合环境温度、电池回路水温、电机回路水温, 判断使用压缩机冷却, 从而驱动水阀、压缩机, 发出水泵、风扇请求。

该冷却回路为:压缩机→冷凝器→电子膨胀阀→电池换热器→压缩机。

另外一种是行车场景下,VCU判断是否满足电池冷却的条件, HVAC综合环境温度、电池回路水温、电机回路水温, 判断使用压缩机冷却, 从而驱动水阀、压缩机, 发出水泵、风扇请求。

该冷却回路为:电池回路水泵→动力电池→水水换热器→电池换热器。

 

 

▲图3 电池冷却控制原理

3.充电模式下的电池加热控制原理

BMS根据电池状态判断是否有加热需求-VCU根据整车状态发送高压系统状态-HVAC计算电池需求水温, 开启PTC、水泵进行加热。

冷却回路包括两条,其一为:电池回路水泵→水水换热器→电池换热器→动力电池→四通换向水阀→电池回路水泵。其二为采暖回路水泵→水加热PTC→三通比例水阀2→ 水水换热器→采暖回路水泵。

 

 

▲图4 充电模式下电池加热控制原理

4.电池热平衡控制原理

在电池电芯最高温度和最低温度之间差值过大,或者电池回路水温与电池最高、最低温度差值过大,从而出现冷热冲击,这时需要开启电池水泵进行电池热平衡。该冷却回路为:电池回路水泵→动力电池→水水换热器→电池换热器→电池回路水泵。

 

 

▲图5 电池热平衡控制原理

5.电池LTR冷却和电机余热回收控制原理

这里包括三部分,分别为电池LTR冷却,电池预冷,电机余热回收。

其中电池LTR冷却是在环境温度25℃以下, 电池温度较高时,切换四通换向水阀位置, 将电池回路和电机回路串联, 利用散热器给电池散热, 达到节能的目的。

而电池预冷则是电池温度即将达到冷却需求温度时, 利用散热器预先对电池进行冷却。

电机余热回收则是电池温度较低、电机回路水温高于电池回路水温一定值时, 将电池和电机回路串联, 利用电机回路温度给电池加热, 使电池处于适宜的工作温度, 达到节能的目的。

冷却回路为四通换向水阀→电机回路水泵→电机系统→三通比例水阀1→散热器/旁通 → 四通换向水阀→电池回路水泵→水水换热器→电池换热器→动力电池→四通换向水阀。

 

 

▲图6 电池LTR以及电机余热回收控制原理

 

02.比亚迪海豹的热管理系统

 

比亚迪海豚的热管理集成模块上集成了6个电磁阀、3个电子膨胀阀以及9个制冷剂管接头,整个热管理系统如下图所示。

▲图7 海豚热泵空调系统

 

海豚的热泵系统中的阀岛设计采用了类似特斯拉集成化,比亚迪对冷媒回路进行了大规模集成,阀岛结构把制冷剂回路大部分控制组件进行了集成,实物和各个接口的定义如下。

▲图8 海豚热泵阀岛

基于图7,整理出整个热泵空系统的原理示意图,如下图所示。

 

 

▲图9 海豚车热泵空调原理示意图

其中图中PT-1、PT-2表示两个制冷剂压力及温度传感器,P-1表示制冷剂压力传感器,T-1、T-2表示两个制冷剂温度传感器。

下面来看下各个场景下热泵空调的运行逻辑。

当打开空调系统制热时,热泵空调系统开启电动压缩机,采暖电子膨胀阀工作、水源换热电磁阀及空调采暖电磁阀均打开,制冷剂通过车内冷凝器放热,通过板式换热器吸收驱动电机、电机控制器等电驱动单元的热量。极低温情况下,开启PTC加热器辅助加热,提高热泵空调的适用温度范围。

空调制热时,制冷剂的流动路线为:压缩机→车内冷凝器→采暖电子膨胀阀→水源换热电磁阀→板式换热器→空调采暖电磁阀→气液分离器→压缩机,如下图所示。

 

 

▲图10 空调制热循环

当空调系统制冷时,热泵空调系统开启电动压缩机,制冷电子阀膨胀阀工作,空调制冷磁阀及空气换热电磁阀均打开,制冷剂通过车外冷凝器放热,车内蒸发器吸收车内热量。

空调制冷时,制冷剂的流动路线为:压缩机→车内冷凝器→空调制冷电磁阀→空气换热电磁阀→单向阀5→制冷电子膨胀阀→车内蒸发器→单向阀4→气液分离器→压缩机,如下图所示。

提到热管理,对于大多数人而言,第一反应就是车内空调使用感受。然而对于整车而言,除了车内空调的使用,还包括对高压系统的加热保温或是散热降温,以及前挡风玻璃的除雾加热等等。

它就像汽车的贴心保护者,静静的管理车上各零部件的温度状态,让部件尽可能处在一个舒适的温度环境,保持零部件的最佳性能发挥,间接的影响车辆的动力性和经济性的优秀表现。

 

下面来看看各主机厂车型的热管理系统。

 

小鹏P7的热管理系统

整个热管理系统的水路是相连通的,通过三通和四通水阀,实现串联和并联模式,整个热管理系统的框图如下图所示。

 

 

▲图 小鹏P7的热管理系统整体框图

1.空调热舒适性系统,主要是空调制热、制冷、除湿、前挡除雾、车内温度以及空气循环的智能调节等。

2.电池加热冷却系统,应用1个四通换向阀, 2个三通比例阀, 实现电池和电机回路的串并联, 从而实现余热回收和电池中温散热功能。

高温时, 依靠电池换热器, 靠制冷剂给电池强制冷却。中温时, 依靠四通换向阀将电池回路与电驱回路串联, 通过前端低温散热器散热, 可以节省电动压缩机功耗。低温时依靠三通比例阀将低温散热器短路, 电池和电机回路串联, 回收电机余热给电池保温。超低温时依靠三通比例阀,通过水水换热器将电池回路加热, 实现给电池快速升温。

3.电驱冷却系统, 依靠电动水泵, 通过低温散热器, 依次给电机控制器、电机进行散热。

4.XPU、大屏主机散热, 通过温度及温升速率判断开启电机水泵, 从电机回路分流一部分流量到XPU、大屏主机水冷板进行冷却, 通过散热器或旁通进行散热。

5.补水排气系统,通过膨胀水壶与电池、电机、暖风回路连接, 分别为三个回路补水, 电池和电驱路共用一个分水箱排气、暖风回路用一个分水箱排气。

各个模块的热管理的具体策略如下:

1.电机冷却控制原理

电机冷却控制是由VCU来控制的,VCU通过判断电机回路中某一器件温度过高则进入电机冷却, 调节电机回路水泵转速、电子风扇转速, HVAC调整三通比例水阀1位置到散热器。其开启温度值:当电机温度高于75℃, IPU高于45℃, DCDC高于60℃, OBC高于50℃时开启电机冷却系统。三通阀通散热器。

整个冷却回路为:电机回路水泵→电机系统→三通比例水阀1→散热器/旁通→四通换向水阀→电机回路水泵。

 

 

▲图 电机冷却控制原理

2.电池冷却控制原理

电池冷却又分为两种,其中一种为充电场景下,在该模式下BMS判断电池冷却需求, VCU判断是否满足电池冷却的条件, HVAC综合环境温度、电池回路水温、电机回路水温, 判断使用压缩机冷却, 从而驱动水阀、压缩机, 发出水泵、风扇请求。

该冷却回路为:压缩机→冷凝器→电子膨胀阀→电池换热器→压缩机。

另外一种是行车场景下,VCU判断是否满足电池冷却的条件, HVAC综合环境温度、电池回路水温、电机回路水温, 判断使用压缩机冷却, 从而驱动水阀、压缩机, 发出水泵、风扇请求。

该冷却回路为:电池回路水泵→动力电池→水水换热器→电池换热器。

 

 

▲图 电池冷却控制原理

3.充电模式下的电池加热控制原理

BMS根据电池状态判断是否有加热需求-VCU根据整车状态发送高压系统状态-HVAC计算电池需求水温, 开启PTC、水泵进行加热。

冷却回路包括两条,其一为:电池回路水泵→水水换热器→电池换热器→动力电池→四通换向水阀→电池回路水泵。其二为采暖回路水泵→水加热PTC→三通比例水阀2→ 水水换热器→采暖回路水泵。

 

 

▲图 充电模式下电池加热控制原理

4.电池热平衡控制原理

在电池电芯最高温度和最低温度之间差值过大,或者电池回路水温与电池最高、最低温度差值过大,从而出现冷热冲击,这时需要开启电池水泵进行电池热平衡。该冷却回路为:电池回路水泵→动力电池→水水换热器→电池换热器→电池回路水泵。

 

 

▲图 电池热平衡控制原理

5.电池LTR冷却和电机余热回收控制原理

这里包括三部分,分别为电池LTR冷却,电池预冷,电机余热回收。

其中电池LTR冷却是在环境温度25℃以下, 电池温度较高时,切换四通换向水阀位置, 将电池回路和电机回路串联, 利用散热器给电池散热, 达到节能的目的。

而电池预冷则是电池温度即将达到冷却需求温度时, 利用散热器预先对电池进行冷却。

电机余热回收则是电池温度较低、电机回路水温高于电池回路水温一定值时, 将电池和电机回路串联, 利用电机回路温度给电池加热, 使电池处于适宜的工作温度, 达到节能的目的。

冷却回路为四通换向水阀→电机回路水泵→电机系统→三通比例水阀1→散热器/旁通 → 四通换向水阀→电池回路水泵→水水换热器→电池换热器→动力电池→四通换向水阀。

 

 

▲图 电池LTR以及电机余热回收控制原理

此帖出自汽车电子论坛

最新回复

感觉这个系统也好复杂,汽车就是一个难点。   详情 回复 发表于 2024-5-23 18:39
点赞(2) 关注

回复
举报

685

帖子

0

TA的资源

纯净的硅(高级)

沙发
 

这玩意有一实的技术含量,不过要想突破,本质上还是得电池和电机技术进步

此帖出自汽车电子论坛
 
 

回复

12

帖子

0

TA的资源

一粒金砂(中级)

板凳
 

学习下电动汽车方面的知识,看看相关的热处理方式及效果。

此帖出自汽车电子论坛

点评

感谢关注,共同学习  详情 回复 发表于 2024-5-23 22:31
 
 
 

回复

6773

帖子

2

TA的资源

版主

4
 

感觉这个系统也好复杂,汽车就是一个难点。

此帖出自汽车电子论坛
 
 
 

回复

1668

帖子

0

TA的资源

五彩晶圆(初级)

5
 
gwei_0210 发表于 2024-5-23 16:21 学习下电动汽车方面的知识,看看相关的热处理方式及效果。

感谢关注,共同学习

此帖出自汽车电子论坛
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/10 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表