561|3

10

帖子

0

TA的资源

一粒金砂(中级)

楼主
 

请推荐一些机器学习英文书籍入门 [复制链接]

 

请推荐一些机器学习英文书籍入门

此帖出自问答论坛

最新回复

当然,请看以下几本适合电子工程师入门机器学习的英文书籍:"Introduction to Machine Learning with Python: A Guide for Data Scientists" by Andreas C. Müller and Sarah Guido: This book provides a practical introduction to machine learning using Python and the popular libraries such as scikit-learn and TensorFlow. It covers various machine learning algorithms and techniques with code examples."Pattern Recognition and Machine Learning" by Christopher M. Bishop: This book provides a comprehensive introduction to pattern recognition and machine learning concepts. It covers topics such as Bayesian methods, linear models, neural networks, and more. It's suitable for readers with a solid mathematical background."Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy: This book offers a probabilistic approach to machine learning, covering topics such as Bayesian networks, graphical models, and probabilistic graphical models. It's suitable for readers who want a deeper understanding of the probabilistic foundations of machine learning."Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems" by Aurélien Géron: This book provides a practical approach to machine learning using popular libraries such as scikit-learn, Keras, and TensorFlow. It covers both traditional machine learning algorithms and deep learning techniques with hands-on examples."Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville: This book is a comprehensive introduction to deep learning, covering topics such as feedforward neural networks, convolutional neural networks, recurrent neural networks, and more. It's suitable for readers who want to dive deep into the theory and applications of deep learning.These books cover a range of topics in machine learning and deep learning, and they are suitable for beginners with different levels of background knowledge.  详情 回复 发表于 2024-5-6 12:33
点赞 关注
 
 

回复
举报

13

帖子

0

TA的资源

一粒金砂(中级)

沙发
 

以下是一些机器学习的英文书籍,适合入门学习:

  1. "Pattern Recognition and Machine Learning" by Christopher M. Bishop: 这本书是一本经典的机器学习教材,涵盖了从基础的概率论到模式识别和机器学习算法的广泛内容。

  2. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron: 这本书介绍了如何使用三个流行的 Python 库来实现机器学习模型,内容涵盖了从简单的线性模型到深度神经网络的实践应用。

  3. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville: 这本书是深度学习领域的经典教材,涵盖了深度学习的基本概念、理论和算法。

  4. "Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy: 这本书提供了一个基于概率的视角来理解机器学习,内容深入浅出,适合初学者。

  5. "Introduction to Machine Learning with Python: A Guide for Data Scientists" by Andreas C. Müller and Sarah Guido: 这本书介绍了使用 Python 进行机器学习的基本方法和技巧,适合希望通过实践学习的读者。

这些书籍涵盖了机器学习的基本理论、实践技巧和深度学习算法,是学习机器学习的绝佳资源。

此帖出自问答论坛
 
 
 

回复

6

帖子

0

TA的资源

一粒金砂(中级)

板凳
 

以下是几本适合入门学习机器学习的英文书籍:

  1. "Introduction to Machine Learning with Python: A Guide for Data Scientists" by Andreas C. Müller and Sarah Guido:

    • 这本书以Python为编程语言,介绍了机器学习的基本概念、常用算法和实践技巧。书中包含了大量的实例代码和案例分析,适合初学者学习和实践。
  2. "Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy:

    • 这是一本关于机器学习概率视角的经典教材,涵盖了机器学习的基础理论、概率模型和算法。书中内容丰富,适合想要深入理解机器学习原理的读者阅读。
  3. "Pattern Recognition and Machine Learning" by Christopher M. Bishop:

    • 这本书是一本机器学习领域的经典教材,详细介绍了模式识别和机器学习的基本原理、算法和应用。书中包含了大量的数学推导和实例,适合想要系统学习机器学习的读者阅读。
  4. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville:

    • 这本书是关于深度学习的经典教材,详细介绍了深度学习的基本原理、算法和应用。书中对数学知识进行了深入浅出的解释,适合想要深入学习深度学习的读者阅读。
  5. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron:

    • 这本书以实战为导向,介绍了使用Scikit-Learn、Keras和TensorFlow等库进行机器学习和深度学习的实践技巧。书中包含了大量的实例代码和实战项目,适合想要通过实践项目学习机器学习的读者阅读。

以上这些书籍都是机器学习领域的经典教材,适合不同层次和兴趣的读者阅读。它们涵盖了从基础知识到深度理论再到实践应用的各个方面,有助于读者系统学习和掌握机器学习技术。

此帖出自问答论坛
 
 
 

回复

6

帖子

0

TA的资源

一粒金砂(中级)

4
 

当然,请看以下几本适合电子工程师入门机器学习的英文书籍:

  1. "Introduction to Machine Learning with Python: A Guide for Data Scientists" by Andreas C. Müller and Sarah Guido: This book provides a practical introduction to machine learning using Python and the popular libraries such as scikit-learn and TensorFlow. It covers various machine learning algorithms and techniques with code examples.

  2. "Pattern Recognition and Machine Learning" by Christopher M. Bishop: This book provides a comprehensive introduction to pattern recognition and machine learning concepts. It covers topics such as Bayesian methods, linear models, neural networks, and more. It's suitable for readers with a solid mathematical background.

  3. "Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy: This book offers a probabilistic approach to machine learning, covering topics such as Bayesian networks, graphical models, and probabilistic graphical models. It's suitable for readers who want a deeper understanding of the probabilistic foundations of machine learning.

  4. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems" by Aurélien Géron: This book provides a practical approach to machine learning using popular libraries such as scikit-learn, Keras, and TensorFlow. It covers both traditional machine learning algorithms and deep learning techniques with hands-on examples.

  5. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville: This book is a comprehensive introduction to deep learning, covering topics such as feedforward neural networks, convolutional neural networks, recurrent neural networks, and more. It's suitable for readers who want to dive deep into the theory and applications of deep learning.

These books cover a range of topics in machine learning and deep learning, and they are suitable for beginners with different levels of background knowledge.

此帖出自问答论坛
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/9 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表