722|0

2935

帖子

4

TA的资源

五彩晶圆(中级)

楼主
 

【STM32U5A5ZJ开发板】I2C总线设备的兼容性测试及SHT20温湿度传感器测试 [复制链接]

SHT20是一款高质量的空气温湿度传感器,传感器使用I2C总线接口和MCU进行通讯,本次通过STM32U5A5ZJ的I2C设备接口进行通讯。

1、I2C设备设置

本次使用I2C1接口进行测试,STM32U5A5ZJ开发板的PB9和PB8接口连接到接口CN7的SCL和SDA引脚。

 

板子的引脚可以提供I2C通讯。使用STM32CUB进行I2C设置

  除了开启I2C1设备外,还需要注意设置I2C的通讯速率,100K的标准速率。其它的设置默认。

2、设备驱动程序

/* An STM32 HAL library written for the SHT2x temperature/humidity sensor series. */
/* Libraries by @eepj www.github.com/eepj */
#include "sht2x_for_stm32_hal.h"
#include "main.h"
#ifdef __cplusplus
extern "C"{
#endif

I2C_HandleTypeDef *_sht2x_ui2c;
	
/**
 * [url=home.php?mod=space&uid=159083]@brief[/url] Initializes the SHT2x temperature/humidity sensor.
 * @param hi2c User I2C handle pointer.
 */
void SHT2x_Init(I2C_HandleTypeDef *hi2c) {
	_sht2x_ui2c = hi2c;
}

/**
 *  @brief Performs a soft reset.
 */
void SHT2x_SoftReset(void){
	uint8_t cmd = SHT2x_SOFT_RESET;
	HAL_I2C_Master_Transmit(_sht2x_ui2c, SHT2x_I2C_ADDR << 1, &cmd, 1, SHT2x_TIMEOUT);
}

/**
 * @brief Gets the value stored in user register.
 * [url=home.php?mod=space&uid=784970]@return[/url] 8-bit value stored in user register, 0 to 255.
 */
uint8_t SHT2x_ReadUserReg(void) {
	uint8_t val;
	uint8_t cmd = SHT2x_READ_REG;
	HAL_I2C_Master_Transmit(_sht2x_ui2c, SHT2x_I2C_ADDR << 1, &cmd, 1, SHT2x_TIMEOUT);
	HAL_I2C_Master_Receive(_sht2x_ui2c, SHT2x_I2C_ADDR << 1, &val, 1, SHT2x_TIMEOUT);
	return val;
}

/**
 * @brief Sends the designated command to sensor and read a 16-bit raw value.
 * @param cmd Command to send to sensor.
 * @return 16-bit raw value, 0 to 65535.
 */
uint16_t SHT2x_GetRaw(uint8_t cmd) {
	uint8_t val[3] = { 0 };
	HAL_I2C_Master_Transmit(_sht2x_ui2c, SHT2x_I2C_ADDR << 1, &cmd, 1, SHT2x_TIMEOUT);
	HAL_I2C_Master_Receive(_sht2x_ui2c, SHT2x_I2C_ADDR << 1, val, 3, SHT2x_TIMEOUT);
	return val[0] << 8 | val[1];
}

/**
 * @brief Measures and gets the current temperature.
 * @param hold Holding mode, 0 for no hold master, 1 for hold master.
 * @return Floating point temperature value.
 */
float SHT2x_GetTemperature(uint8_t hold) {
	uint8_t cmd = (hold ? SHT2x_READ_TEMP_HOLD : SHT2x_READ_TEMP_NOHOLD);
	return -46.85 + 175.72 * (SHT2x_GetRaw(cmd) / 65536.0);
}

/**
 * @brief Measures and gets the current relative humidity.
 * @param hold Holding mode, 0 for no hold master, 1 for hold master.
 * @return Floating point relative humidity value.
 */
float SHT2x_GetRelativeHumidity(uint8_t hold) {
	uint8_t cmd = (hold ? SHT2x_READ_RH_HOLD : SHT2x_READ_RH_NOHOLD);
	return -6 + 125.00 * (SHT2x_GetRaw(cmd) / 65536.0);
}

/**
 * @brief Sets the measurement resolution.
 * @param res Enum resolution.
 * @note Available resolutions: RES_14_12, RES_12_8, RES_13_10, RES_11_11.
 * @note RES_14_12 = 14-bit temperature and 12-bit RH resolution, etc.
 */
void SHT2x_SetResolution(SHT2x_Resolution res) {
	uint8_t val = SHT2x_ReadUserReg();
	val = (val & 0x7e) | res;
	uint8_t temp[2] = { SHT2x_WRITE_REG, val };
	HAL_I2C_Master_Transmit(_sht2x_ui2c, SHT2x_I2C_ADDR << 1, temp, 2, SHT2x_TIMEOUT);
}

/**
 * @brief Converts degrees Celsius to degrees Fahrenheit.
 * @param celsius Floating point temperature in degrees Celsius.
 * @return Floating point temperature in degrees Fahrenheit.
 */
float SHT2x_CelsiusToFahrenheit(float celsius) {
	return (9.0 / 5.0) * celsius + 32;
}

/**
 * @brief Converts degrees Celsius to Kelvin.
 * @param celsius Floating point temperature in degrees Celsius.
 * @return Floating point temperature in Kelvin.
 */
float SHT2x_CelsiusToKelvin(float celsius) {
	return celsius + 273;
}

/**
 * @brief Gets the integer part of a floating point number.
 * @note Avoids the use of sprinf floating point formatting.
 * @param num Floating point number.
 * @return Integer part of floating point number.
 */
int32_t SHT2x_GetInteger(float num) {
	return num / 1;
}

/**
 * @brief Gets the decimal part of a floating point number.
 * @note Avoids the use of sprinf floating point formatting.
 * @param num Floating point number.
 * @return Decimal part of floating point number.
 */
uint32_t SHT2x_GetDecimal(float num, int digits) {
	float postDec = num - SHT2x_GetInteger(num);
	return postDec * SHT2x_Ipow(10, digits);
}

/**
 * @brief Integer equivalent of pow() in math.h.
 * @param base Base.
 * @param power Power.
 * @return
 */
uint32_t SHT2x_Ipow(uint32_t base, uint32_t power) {
	uint32_t temp = base;
	for (uint32_t i = 1; i < power; i++)
		temp *= base;
	return temp;
}

#ifdef __cplusplus
}
#endif

sht2x_for_stm32_hal.C程序为设备的驱动程序,程序除了I2C设备外还有传感器的数字转数值的计算程序。

程序的输出和测试程序

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * [url=home.php?mod=space&uid=1307177]@File[/url] : main.c
  * @brief          : Main program body
  ******************************************************************************
  * [url=home.php?mod=space&uid=1020061]@attention[/url] *
  * Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "sht2x_for_stm32_hal.h"
#include <stdio.h>
#include <string.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

I2C_HandleTypeDef hi2c1;

UART_HandleTypeDef hlpuart1;
UART_HandleTypeDef huart1;
DMA_HandleTypeDef handle_LPDMA1_Channel0;

TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim8;
DMA_NodeTypeDef Node_GPDMA1_Channel0;
DMA_QListTypeDef List_GPDMA1_Channel0;
DMA_HandleTypeDef handle_GPDMA1_Channel0;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void SystemPower_Config(void);
static void MX_GPIO_Init(void);
static void MX_GPDMA1_Init(void);
static void MX_LPDMA1_Init(void);
static void MX_ICACHE_Init(void);
static void MX_LPUART1_UART_Init(void);
static void MX_TIM8_Init(void);
static void MX_TIM2_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  unsigned char buffer[100] = { 0 };
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* Configure the System Power */
  SystemPower_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_GPDMA1_Init();
  MX_LPDMA1_Init();
  MX_ICACHE_Init();
  MX_LPUART1_UART_Init();
  MX_TIM8_Init();
  MX_TIM2_Init();
  MX_USART1_UART_Init();
  MX_I2C1_Init();
  /* USER CODE BEGIN 2 */
  /* Initializes SHT2x temperature/humidity sensor and sets the resolution. */
	SHT2x_Init(&hi2c1);
	SHT2x_SetResolution(RES_14_12);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
   
		/* Gets current temperature & relative humidity. */
		float cel = SHT2x_GetTemperature(1);
		/* Converts temperature to degrees Fahrenheit and Kelvin */
		float fah = SHT2x_CelsiusToFahrenheit(cel);
		float kel = SHT2x_CelsiusToKelvin(cel);
		float rh = SHT2x_GetRelativeHumidity(1);
		/* May show warning below. Ignore and proceed. */
		sprintf(buffer,"%d.%dC, %d.%dF, %d.%d K, %d.%d%% RH\n",
		SHT2x_GetInteger(cel), SHT2x_GetDecimal(cel, 1),
		SHT2x_GetInteger(fah), SHT2x_GetDecimal(fah, 1),
		SHT2x_GetInteger(kel), SHT2x_GetDecimal(kel, 1),
		SHT2x_GetInteger(rh), SHT2x_GetDecimal(rh, 1));
		HAL_UART_Transmit(&huart1, buffer, strlen(buffer), 1000);
		HAL_Delay(1000);
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMBOOST = RCC_PLLMBOOST_DIV1;
  RCC_OscInitStruct.PLL.PLLM = 1;
  RCC_OscInitStruct.PLL.PLLN = 10;
  RCC_OscInitStruct.PLL.PLLP = 2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 1;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLLVCIRANGE_1;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_PCLK3;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Power Configuration
  * @retval None
  */
static void SystemPower_Config(void)
{

  /*
   * Disable the internal Pull-Up in Dead Battery pins of UCPD peripheral
   */
  HAL_PWREx_DisableUCPDDeadBattery();

  /*
   * Switch to SMPS regulator instead of LDO
   */
  if (HAL_PWREx_ConfigSupply(PWR_SMPS_SUPPLY) != HAL_OK)
  {
    Error_Handler();
  }
/* USER CODE BEGIN PWR */
/* USER CODE END PWR */
}

/**
  * @brief GPDMA1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPDMA1_Init(void)
{

  /* USER CODE BEGIN GPDMA1_Init 0 */

  /* USER CODE END GPDMA1_Init 0 */

  /* Peripheral clock enable */
  __HAL_RCC_GPDMA1_CLK_ENABLE();

  /* GPDMA1 interrupt Init */
    HAL_NVIC_SetPriority(GPDMA1_Channel0_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(GPDMA1_Channel0_IRQn);

  /* USER CODE BEGIN GPDMA1_Init 1 */

  /* USER CODE END GPDMA1_Init 1 */
  /* USER CODE BEGIN GPDMA1_Init 2 */

  /* USER CODE END GPDMA1_Init 2 */

}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.Timing = 0x30909DEC;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Analogue filter
  */
  if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Digital filter
  */
  if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief ICACHE Initialization Function
  * @param None
  * @retval None
  */
static void MX_ICACHE_Init(void)
{

  /* USER CODE BEGIN ICACHE_Init 0 */

  /* USER CODE END ICACHE_Init 0 */

  /* USER CODE BEGIN ICACHE_Init 1 */

  /* USER CODE END ICACHE_Init 1 */

  /** Enable instruction cache in 1-way (direct mapped cache)
  */
  if (HAL_ICACHE_ConfigAssociativityMode(ICACHE_1WAY) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_ICACHE_Enable() != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ICACHE_Init 2 */

  /* USER CODE END ICACHE_Init 2 */

}

/**
  * @brief LPDMA1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_LPDMA1_Init(void)
{

  /* USER CODE BEGIN LPDMA1_Init 0 */

  /* USER CODE END LPDMA1_Init 0 */

  /* Peripheral clock enable */
  __HAL_RCC_LPDMA1_CLK_ENABLE();

  /* LPDMA1 interrupt Init */
    HAL_NVIC_SetPriority(LPDMA1_Channel0_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(LPDMA1_Channel0_IRQn);

  /* USER CODE BEGIN LPDMA1_Init 1 */

  /* USER CODE END LPDMA1_Init 1 */
  /* USER CODE BEGIN LPDMA1_Init 2 */

  /* USER CODE END LPDMA1_Init 2 */

}

/**
  * @brief LPUART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_LPUART1_UART_Init(void)
{

  /* USER CODE BEGIN LPUART1_Init 0 */

  /* USER CODE END LPUART1_Init 0 */

  /* USER CODE BEGIN LPUART1_Init 1 */

  /* USER CODE END LPUART1_Init 1 */
  hlpuart1.Instance = LPUART1;
  hlpuart1.Init.BaudRate = 115200;
  hlpuart1.Init.WordLength = UART_WORDLENGTH_8B;
  hlpuart1.Init.StopBits = UART_STOPBITS_1;
  hlpuart1.Init.Parity = UART_PARITY_NONE;
  hlpuart1.Init.Mode = UART_MODE_TX_RX;
  hlpuart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  hlpuart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  hlpuart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  hlpuart1.FifoMode = UART_FIFOMODE_DISABLE;
  if (HAL_UART_Init(&hlpuart1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&hlpuart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&hlpuart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&hlpuart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN LPUART1_Init 2 */

  /* USER CODE END LPUART1_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 159;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 2000000;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 1000000;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */
  HAL_TIM_MspPostInit(&htim2);

}

/**
  * @brief TIM8 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM8_Init(void)
{

  /* USER CODE BEGIN TIM8_Init 0 */

  /* USER CODE END TIM8_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};

  /* USER CODE BEGIN TIM8_Init 1 */

  /* USER CODE END TIM8_Init 1 */
  htim8.Instance = TIM8;
  htim8.Init.Prescaler = 159;
  htim8.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim8.Init.Period = 1000;
  htim8.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim8.Init.RepetitionCounter = 0;
  htim8.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim8) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim8, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 500;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim8, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.BreakFilter = 0;
  sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT;
  sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
  sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
  sBreakDeadTimeConfig.Break2Filter = 0;
  sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim8, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM8_Init 2 */

  /* USER CODE END TIM8_Init 2 */
  HAL_TIM_MspPostInit(&htim8);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

main.c程序是驱动的测试程序。

3、程序运行如下:

 

程序输出主要有三种温度显示和温湿度值显示。

 

 

 

 

 

 

 

此帖出自stm32/stm8论坛
点赞 关注(1)
 

回复
举报
您需要登录后才可以回帖 登录 | 注册

查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/8 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表