【得捷电子Follow me第4期】终极任务二:使用外部存储器,组建简易FTP文件服务器
[复制链接]
本帖最后由 电子烂人 于 2024-2-24 02:13 编辑
1.使用开源代码搭建FTP服务器
ESP8266和ESP32有一个完整的历程,其中使用的是ftpservers.py这个历程,用这个就能搭建起来简易的FTP文件服务器
import socket
import time, network,framebuf
from ftpserver import ftpserver
from machine import Pin,SPI,UART,PWM
ip = '192.168.2.114'
sn = '255.255.255.0'
gw = '192.168.2.1'
dns= '223.5.5.5'
netinfo=(ip, sn, gw, dns)
def w5x00_init():
global localip
spi=SPI(0,2_000_000, mosi=Pin(19),miso=Pin(16),sck=Pin(18))
nic = network.WIZNET5K(spi,Pin(17),Pin(20))
nic.active(True)
# use dhcp, if fail use static netinfo
#try:
# nic.ifconfig('dhcp')
#except:
nic.ifconfig(netinfo)
localip = nic.ifconfig()[0]
while not nic.isconnected():
time.sleep(1)
# print(nic.regs())
print('no link')
return nic
nic = w5x00_init()
ftpserver(nic)
这个软件是和XSHELL一家公司的,免费且和xshell同样好用。
要注意,由于我这里用的是FTP协议,新建的时候要更改下协议选择,否则会无法正常链接
登录的同时会弹出密码页,只需输入“user”即可正常登入FTP服务器:
成功登录并传输文件,如下图:
不过当前的容量太小,只能使用板子上的 2MByte闪存,仅能保存一些代码,如果要实现完整功能的话,还需要挂载SD卡
二、挂载SD卡
这里要用到一个SDCARD库,需要在工具——管理包中查找并安装:
如果不想从网络安装的话,也可以直接手敲一段烧录在板卡里,命名为sdcard.py,可以实现相同的效果:
from micropython import const
import time
_CMD_TIMEOUT = const(100)
_R1_IDLE_STATE = const(1 << 0)
# R1_ERASE_RESET = const(1 << 1)
_R1_ILLEGAL_COMMAND = const(1 << 2)
# R1_COM_CRC_ERROR = const(1 << 3)
# R1_ERASE_SEQUENCE_ERROR = const(1 << 4)
# R1_ADDRESS_ERROR = const(1 << 5)
# R1_PARAMETER_ERROR = const(1 << 6)
_TOKEN_CMD25 = const(0xFC)
_TOKEN_STOP_TRAN = const(0xFD)
_TOKEN_DATA = const(0xFE)
class SDCard:
def __init__(self, spi, cs, baudrate=1320000):
self.spi = spi
self.cs = cs
self.cmdbuf = bytearray(6)
self.dummybuf = bytearray(512)
self.tokenbuf = bytearray(1)
for i in range(512):
self.dummybuf[i] = 0xFF
self.dummybuf_memoryview = memoryview(self.dummybuf)
# initialise the card
self.init_card(baudrate)
def init_spi(self, baudrate):
try:
master = self.spi.MASTER
except AttributeError:
# on ESP8266
self.spi.init(baudrate=baudrate, phase=0, polarity=0)
else:
# on pyboard
self.spi.init(master, baudrate=baudrate, phase=0, polarity=0)
def init_card(self, baudrate):
# init CS pin
self.cs.init(self.cs.OUT, value=1)
# init SPI bus; use low data rate for initialisation
self.init_spi(100000)
# clock card at least 100 cycles with cs high
for i in range(16):
self.spi.write(b"\xff")
# CMD0: init card; should return _R1_IDLE_STATE (allow 5 attempts)
for _ in range(5):
if self.cmd(0, 0, 0x95) == _R1_IDLE_STATE:
break
else:
raise OSError("no SD card")
# CMD8: determine card version
r = self.cmd(8, 0x01AA, 0x87, 4)
if r == _R1_IDLE_STATE:
self.init_card_v2()
elif r == (_R1_IDLE_STATE | _R1_ILLEGAL_COMMAND):
self.init_card_v1()
else:
raise OSError("couldn't determine SD card version")
# get the number of sectors
# CMD9: response R2 (R1 byte + 16-byte block read)
if self.cmd(9, 0, 0, 0, False) != 0:
raise OSError("no response from SD card")
csd = bytearray(16)
self.readinto(csd)
if csd[0] & 0xC0 == 0x40: # CSD version 2.0
self.sectors = ((csd[8] << 8 | csd[9]) + 1) * 1024
elif csd[0] & 0xC0 == 0x00: # CSD version 1.0 (old, <=2GB)
c_size = (csd[6] & 0b11) << 10 | csd[7] << 2 | csd[8] >> 6
c_size_mult = (csd[9] & 0b11) << 1 | csd[10] >> 7
read_bl_len = csd[5] & 0b1111
capacity = (c_size + 1) * (2 ** (c_size_mult + 2)) * (2**read_bl_len)
self.sectors = capacity // 512
else:
raise OSError("SD card CSD format not supported")
# print('sectors', self.sectors)
# CMD16: set block length to 512 bytes
if self.cmd(16, 512, 0) != 0:
raise OSError("can't set 512 block size")
# set to high data rate now that it's initialised
self.init_spi(baudrate)
def init_card_v1(self):
for i in range(_CMD_TIMEOUT):
time.sleep_ms(50)
self.cmd(55, 0, 0)
if self.cmd(41, 0, 0) == 0:
# SDSC card, uses byte addressing in read/write/erase commands
self.cdv = 512
# print("[SDCard] v1 card")
return
raise OSError("timeout waiting for v1 card")
def init_card_v2(self):
for i in range(_CMD_TIMEOUT):
time.sleep_ms(50)
self.cmd(58, 0, 0, 4)
self.cmd(55, 0, 0)
if self.cmd(41, 0x40000000, 0) == 0:
self.cmd(58, 0, 0, -4) # 4-byte response, negative means keep the first byte
ocr = self.tokenbuf[0] # get first byte of response, which is OCR
if not ocr & 0x40:
# SDSC card, uses byte addressing in read/write/erase commands
self.cdv = 512
else:
# SDHC/SDXC card, uses block addressing in read/write/erase commands
self.cdv = 1
# print("[SDCard] v2 card")
return
raise OSError("timeout waiting for v2 card")
def cmd(self, cmd, arg, crc, final=0, release=True, skip1=False):
self.cs(0)
# create and send the command
buf = self.cmdbuf
buf[0] = 0x40 | cmd
buf[1] = arg >> 24
buf[2] = arg >> 16
buf[3] = arg >> 8
buf[4] = arg
buf[5] = crc
self.spi.write(buf)
if skip1:
self.spi.readinto(self.tokenbuf, 0xFF)
# wait for the response (response[7] == 0)
for i in range(_CMD_TIMEOUT):
self.spi.readinto(self.tokenbuf, 0xFF)
response = self.tokenbuf[0]
if not (response & 0x80):
# this could be a big-endian integer that we are getting here
# if final<0 then store the first byte to tokenbuf and discard the rest
if final < 0:
self.spi.readinto(self.tokenbuf, 0xFF)
final = -1 - final
for j in range(final):
self.spi.write(b"\xff")
if release:
self.cs(1)
self.spi.write(b"\xff")
return response
# timeout
self.cs(1)
self.spi.write(b"\xff")
return -1
def readinto(self, buf):
self.cs(0)
# read until start byte (0xff)
for i in range(_CMD_TIMEOUT):
self.spi.readinto(self.tokenbuf, 0xFF)
if self.tokenbuf[0] == _TOKEN_DATA:
break
time.sleep_ms(1)
else:
self.cs(1)
raise OSError("timeout waiting for response")
# read data
mv = self.dummybuf_memoryview
if len(buf) != len(mv):
mv = mv[: len(buf)]
self.spi.write_readinto(mv, buf)
# read checksum
self.spi.write(b"\xff")
self.spi.write(b"\xff")
self.cs(1)
self.spi.write(b"\xff")
def write(self, token, buf):
self.cs(0)
# send: start of block, data, checksum
self.spi.read(1, token)
self.spi.write(buf)
self.spi.write(b"\xff")
self.spi.write(b"\xff")
# check the response
if (self.spi.read(1, 0xFF)[0] & 0x1F) != 0x05:
self.cs(1)
self.spi.write(b"\xff")
return
# wait for write to finish
while self.spi.read(1, 0xFF)[0] == 0:
pass
self.cs(1)
self.spi.write(b"\xff")
def write_token(self, token):
self.cs(0)
self.spi.read(1, token)
self.spi.write(b"\xff")
# wait for write to finish
while self.spi.read(1, 0xFF)[0] == 0x00:
pass
self.cs(1)
self.spi.write(b"\xff")
def readblocks(self, block_num, buf):
# workaround for shared bus, required for (at least) some Kingston
# devices, ensure MOSI is high before starting transaction
self.spi.write(b"\xff")
nblocks = len(buf) // 512
assert nblocks and not len(buf) % 512, "Buffer length is invalid"
if nblocks == 1:
# CMD17: set read address for single block
if self.cmd(17, block_num * self.cdv, 0, release=False) != 0:
# release the card
self.cs(1)
raise OSError(5) # EIO
# receive the data and release card
self.readinto(buf)
else:
# CMD18: set read address for multiple blocks
if self.cmd(18, block_num * self.cdv, 0, release=False) != 0:
# release the card
self.cs(1)
raise OSError(5) # EIO
offset = 0
mv = memoryview(buf)
while nblocks:
# receive the data and release card
self.readinto(mv[offset : offset + 512])
offset += 512
nblocks -= 1
if self.cmd(12, 0, 0xFF, skip1=True):
raise OSError(5) # EIO
def writeblocks(self, block_num, buf):
# workaround for shared bus, required for (at least) some Kingston
# devices, ensure MOSI is high before starting transaction
self.spi.write(b"\xff")
nblocks, err = divmod(len(buf), 512)
assert nblocks and not err, "Buffer length is invalid"
if nblocks == 1:
# CMD24: set write address for single block
if self.cmd(24, block_num * self.cdv, 0) != 0:
raise OSError(5) # EIO
# send the data
self.write(_TOKEN_DATA, buf)
else:
# CMD25: set write address for first block
if self.cmd(25, block_num * self.cdv, 0) != 0:
raise OSError(5) # EIO
# send the data
offset = 0
mv = memoryview(buf)
while nblocks:
self.write(_TOKEN_CMD25, mv[offset : offset + 512])
offset += 512
nblocks -= 1
self.write_token(_TOKEN_STOP_TRAN)
def ioctl(self, op, arg):
if op == 4: # get number of blocks
return self.sectors
if op == 5: # get block size in bytes
return 512
由于sd 读卡器和W5500芯片都是使用的SPI传输数据,这里需要注意不要让两个SPI接口相干扰
用一段代码将SD卡挂载到根目录:
from machine import Pin, SPI
import machine, sdcard, os
# 创建SPI对象,spi引脚如下述
spi = SPI(1, baudrate=10000000, polarity=0, phase=0, sck=Pin(Pin.P2),mosi=Pin(Pin.P3),miso=Pin(Pin.P4))
# 构建SDCard对象
sd = sdcard.SDCard(spi, Pin(Pin.P16))
# 挂载sd到 '/sd' 路径
os.mount(sd, '/sd')
# 创建文件并写数据
with open("/sd/test.txt", "w") as f:
f.write("Hello world!\r\n")
还好,自制的拓展板上留出了一组SPI接口,可以直接焊接在上面
3.添加时间戳和掉电保存
因为在上一篇文章中只做到了上电显示时间,所以在这里重新添加一下每隔10S刷新的办法
本次任务有一个UPS电源,所以很有必要添加电压检测和电池容量显示:
from machine import Pin,SPI,PWM,I2C
from usocket import socket
from ftpserver import ftpserver
import time, network,framebuf,ntptime
BL = 13
DC = 8
RST = 12
MOSI = 11
SCK = 10
CS = 9
ip = '192.168.2.114'
sn = '255.255.255.0'
gw = '192.168.2.1'
dns= '223.5.5.5'
netinfo=(ip, sn, gw, dns)
# Config Register (R/W)
_REG_CONFIG = 0x00
# SHUNT VOLTAGE REGISTER (R)
_REG_SHUNTVOLTAGE = 0x01
# BUS VOLTAGE REGISTER (R)
_REG_BUSVOLTAGE = 0x02
# POWER REGISTER (R)
_REG_POWER = 0x03
# CURRENT REGISTER (R)
_REG_CURRENT = 0x04
# CALIBRATION REGISTER (R/W)
_REG_CALIBRATION = 0x05
class BusVoltageRange:
"""Constants for ``bus_voltage_range``"""
RANGE_16V = 0x00 # set bus voltage range to 16V
RANGE_32V = 0x01 # set bus voltage range to 32V (default)
class Gain:
"""Constants for ``gain``"""
DIV_1_40MV = 0x00 # shunt prog. gain set to 1, 40 mV range
DIV_2_80MV = 0x01 # shunt prog. gain set to /2, 80 mV range
DIV_4_160MV = 0x02 # shunt prog. gain set to /4, 160 mV range
DIV_8_320MV = 0x03 # shunt prog. gain set to /8, 320 mV range
class ADCResolution:
"""Constants for ``bus_adc_resolution`` or ``shunt_adc_resolution``"""
ADCRES_9BIT_1S = 0x00 # 9bit, 1 sample, 84us
ADCRES_10BIT_1S = 0x01 # 10bit, 1 sample, 148us
ADCRES_11BIT_1S = 0x02 # 11 bit, 1 sample, 276us
ADCRES_12BIT_1S = 0x03 # 12 bit, 1 sample, 532us
ADCRES_12BIT_2S = 0x09 # 12 bit, 2 samples, 1.06ms
ADCRES_12BIT_4S = 0x0A # 12 bit, 4 samples, 2.13ms
ADCRES_12BIT_8S = 0x0B # 12bit, 8 samples, 4.26ms
ADCRES_12BIT_16S = 0x0C # 12bit, 16 samples, 8.51ms
ADCRES_12BIT_32S = 0x0D # 12bit, 32 samples, 17.02ms
ADCRES_12BIT_64S = 0x0E # 12bit, 64 samples, 34.05ms
ADCRES_12BIT_128S = 0x0F # 12bit, 128 samples, 68.10ms
class Mode:
"""Constants for ``mode``"""
POWERDOW = 0x00 # power down
SVOLT_TRIGGERED = 0x01 # shunt voltage triggered
BVOLT_TRIGGERED = 0x02 # bus voltage triggered
SANDBVOLT_TRIGGERED = 0x03 # shunt and bus voltage triggered
ADCOFF = 0x04 # ADC off
SVOLT_CONTINUOUS = 0x05 # shunt voltage continuous
BVOLT_CONTINUOUS = 0x06 # bus voltage continuous
SANDBVOLT_CONTINUOUS = 0x07 # shunt and bus voltage continuous
class INA219:
def __init__(self, i2c_bus=1, addr=0x40):
self.i2c = I2C(i2c_bus);
self.addr = addr
# Set chip to known config values to start
self._cal_value = 0
self._current_lsb = 0
self._power_lsb = 0
self.set_calibration_32V_2A()
def read(self,address):
data = self.i2c.readfrom_mem(self.addr, address, 2)
return ((data[0] * 256 ) + data[1])
def write(self,address,data):
temp = [0,0]
temp[1] = data & 0xFF
temp[0] =(data & 0xFF00) >> 8
self.i2c.writeto_mem(self.addr,address,bytes(temp))
def set_calibration_32V_2A(self):
"""Configures to INA219 to be able to measure up to 32V and 2A of current. Counter
overflow occurs at 3.2A.
..note :: These calculations assume a 0.1 shunt ohm resistor is present
"""
# By default we use a pretty huge range for the input voltage,
# which probably isn't the most appropriate choice for system
# that don't use a lot of power. But all of the calculations
# are shown below if you want to change the settings. You will
# also need to change any relevant register settings, such as
# setting the VBUS_MAX to 16V instead of 32V, etc.
# VBUS_MAX = 32V (Assumes 32V, can also be set to 16V)
# VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be 0.16, 0.08, 0.04)
# RSHUNT = 0.1 (Resistor value in ohms)
# 1. Determine max possible current
# MaxPossible_I = VSHUNT_MAX / RSHUNT
# MaxPossible_I = 3.2A
# 2. Determine max expected current
# MaxExpected_I = 2.0A
# 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit)
# MinimumLSB = MaxExpected_I/32767
# MinimumLSB = 0.000061 (61uA per bit)
# MaximumLSB = MaxExpected_I/4096
# MaximumLSB = 0,000488 (488uA per bit)
# 4. Choose an LSB between the min and max values
# (Preferrably a roundish number close to MinLSB)
# CurrentLSB = 0.0001 (100uA per bit)
self._current_lsb = 1 # Current LSB = 100uA per bit
# 5. Compute the calibration register
# Cal = trunc (0.04096 / (Current_LSB * RSHUNT))
# Cal = 4096 (0x1000)
self._cal_value = 4096
# 6. Calculate the power LSB
# PowerLSB = 20 * CurrentLSB
# PowerLSB = 0.002 (2mW per bit)
self._power_lsb = .002 # Power LSB = 2mW per bit
# 7. Compute the maximum current and shunt voltage values before overflow
#
# Max_Current = Current_LSB * 32767
# Max_Current = 3.2767A before overflow
#
# If Max_Current > Max_Possible_I then
# Max_Current_Before_Overflow = MaxPossible_I
# Else
# Max_Current_Before_Overflow = Max_Current
# End If
#
# Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT
# Max_ShuntVoltage = 0.32V
#
# If Max_ShuntVoltage >= VSHUNT_MAX
# Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX
# Else
# Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage
# End If
# 8. Compute the Maximum Power
# MaximumPower = Max_Current_Before_Overflow * VBUS_MAX
# MaximumPower = 3.2 * 32V
# MaximumPower = 102.4W
# Set Calibration register to 'Cal' calculated above
self.write(_REG_CALIBRATION,self._cal_value)
# Set Config register to take into account the settings above
self.bus_voltage_range = BusVoltageRange.RANGE_32V
self.gain = Gain.DIV_8_320MV
self.bus_adc_resolution = ADCResolution.ADCRES_12BIT_32S
self.shunt_adc_resolution = ADCResolution.ADCRES_12BIT_32S
self.mode = Mode.SANDBVOLT_CONTINUOUS
self.config = self.bus_voltage_range << 13 | \
self.gain << 11 | \
self.bus_adc_resolution << 7 | \
self.shunt_adc_resolution << 3 | \
self.mode
self.write(_REG_CONFIG,self.config)
def getShuntVoltage_mV(self):
value = self.read(_REG_SHUNTVOLTAGE)
if value > 32767:
value -= 65535
return value * 0.01
def getBusVoltage_V(self):
self.read(_REG_BUSVOLTAGE)
return (self.read(_REG_BUSVOLTAGE) >> 3) * 0.004
def getCurrent_mA(self):
value = self.read(_REG_CURRENT)
if value > 32767:
value -= 65535
return value * self._current_lsb
def w5x00_init():
global localip
spi=SPI(0,2_000_000, mosi=Pin(19),miso=Pin(16),sck=Pin(18))
nic = network.WIZNET5K(spi,Pin(17),Pin(20))
nic.active(True)
# use dhcp, if fail use static netinfo
#try:
# nic.ifconfig('dhcp')
#except:
nic.ifconfig(netinfo)
localip = nic.ifconfig()[0]
while not nic.isconnected():
time.sleep(1)
# print(nic.regs())
print('no link')
return nic
class LCD_1inch14(framebuf.FrameBuffer):
def __init__(self):
self.width = 240
self.height = 135
self.cs = Pin(CS,Pin.OUT)
self.rst = Pin(RST,Pin.OUT)
self.cs(1)
self.spi = SPI(1)
self.spi = SPI(1,1000_000)
self.spi = SPI(1,10000_000,polarity=0, phase=0,sck=Pin(SCK),mosi=Pin(MOSI),miso=None)
self.dc = Pin(DC,Pin.OUT)
self.dc(1)
self.buffer = bytearray(self.height * self.width * 2)
super().__init__(self.buffer, self.width, self.height, framebuf.RGB565)
self.init_display()
self.red = 0x07E0
self.green = 0x001f
self.blue = 0xf800
self.white = 0xffff
def write_cmd(self, cmd):
self.cs(1)
self.dc(0)
self.cs(0)
self.spi.write(bytearray([cmd]))
self.cs(1)
def write_data(self, buf):
self.cs(1)
self.dc(1)
self.cs(0)
self.spi.write(bytearray([buf]))
self.cs(1)
def init_display(self):
"""Initialize dispaly"""
self.rst(1)
self.rst(0)
self.rst(1)
self.write_cmd(0x36)
self.write_data(0x70)
self.write_cmd(0x3A)
self.write_data(0x05)
self.write_cmd(0xB2)
self.write_data(0x0C)
self.write_data(0x0C)
self.write_data(0x00)
self.write_data(0x33)
self.write_data(0x33)
self.write_cmd(0xB7)
self.write_data(0x35)
self.write_cmd(0xBB)
self.write_data(0x19)
self.write_cmd(0xC0)
self.write_data(0x2C)
self.write_cmd(0xC2)
self.write_data(0x01)
self.write_cmd(0xC3)
self.write_data(0x12)
self.write_cmd(0xC4)
self.write_data(0x20)
self.write_cmd(0xC6)
self.write_data(0x0F)
self.write_cmd(0xD0)
self.write_data(0xA4)
self.write_data(0xA1)
self.write_cmd(0xE0)
self.write_data(0xD0)
self.write_data(0x04)
self.write_data(0x0D)
self.write_data(0x11)
self.write_data(0x13)
self.write_data(0x2B)
self.write_data(0x3F)
self.write_data(0x54)
self.write_data(0x4C)
self.write_data(0x18)
self.write_data(0x0D)
self.write_data(0x0B)
self.write_data(0x1F)
self.write_data(0x23)
self.write_cmd(0xE1)
self.write_data(0xD0)
self.write_data(0x04)
self.write_data(0x0C)
self.write_data(0x11)
self.write_data(0x13)
self.write_data(0x2C)
self.write_data(0x3F)
self.write_data(0x44)
self.write_data(0x51)
self.write_data(0x2F)
self.write_data(0x1F)
self.write_data(0x1F)
self.write_data(0x20)
self.write_data(0x23)
self.write_cmd(0x21)
self.write_cmd(0x11)
self.write_cmd(0x29)
def show(self):
self.write_cmd(0x2A)
self.write_data(0x00)
self.write_data(0x28)
self.write_data(0x01)
self.write_data(0x17)
self.write_cmd(0x2B)
self.write_data(0x00)
self.write_data(0x35)
self.write_data(0x00)
self.write_data(0xBB)
self.write_cmd(0x2C)
self.cs(1)
self.dc(1)
self.cs(0)
self.spi.write(self.buffer)
self.cs(1)
if __name__=='__main__':
# Create an ADS1115 ADC (16-bit) instance.
ina219 = INA219(addr=0x43)
LCD = LCD_1inch14()
nic=w5x00_init()
ntptime.settime()
ftpserver(nic)
while True:
t = time.localtime(time.time() + 8*3600)
LCD.fill(LCD.white)
LCD.text("Follow me NO.4",0,5,LCD.red)
LCD.text("Final Task :",130,5,LCD.green)
LCD.hline(10,15,220,LCD.blue)
LCD.hline(10,115,220,LCD.blue)
LCD.vline(10,15,100,LCD.blue)
LCD.vline(230,15,100,LCD.blue)
LCD.text("FTP server running",15,20,LCD.green)
LCD.text('IP address :%s'%(localip),15,30,LCD.blue)
LCD.text("by ee_jark",120,120,LCD.blue)
LCD.show()
bus_voltage = ina219.getBusVoltage_V() # voltage on V- (load side)
current = ina219.getCurrent_mA() # current in mA
P = (bus_voltage -3)/1.2*100
if(P<0):P=0
elif(P>100):P=100
# INA219 measure bus voltage on the load side. So PSU voltage = bus_voltage + shunt_voltage
print("Voltage: {:6.3f} V".format(bus_voltage))
print("Current: {:6.3f} A".format(current/1000))
print("Percent: {:6.1f} %".format(P))
print("")
time.sleep(2)
LCD.text("Voltage: {:6.3f} V".format(bus_voltage),15,40,LCD.red)
LCD.text("Percent: {:6.0f} %".format(P),15,50,LCD.red)
LCD.text("now time:%s-%s-%s %s:%s"% (t[0],t[1],t[2],t[3],t[4]),15,60,LCD.blue)
LCD.show()
time.sleep(10)
LCD.fill(0xFFFF)
同时添加屏幕显示电量的代码,最后显示结果如下:
|