基本的恒流源电路主要是由输入级和输出级构成,输入级提供参考电流,输出级输出需要的恒定电流。恒流源电路就是要能够提供一个稳定的电流以保证其它电路稳定工作的基础。即要求恒流源电路输出恒定电流,因此作为输出级的器件应该是具有饱和输出电流的伏安特性。
这可以采用工作于输出电流饱和状态的双极结型晶体管或者金氧半场效晶体管来实现。为了保证输出晶体管的电流稳定,就必须要满足两个条件:
其输入电压要稳定——输入级需要是恒压源。
输出晶体管的输出电阻尽量大——输出级需要是恒流源。
四种恒流源电路分析:
在改进型差动放大器中,用恒流源取代射极电阻RE,既为差动放大电路设置了合适的静态工作电流,又大大增强了共模负反馈作用,使电路具有了更强的抑制共模信号的能力,且不需要很高的电源电压,所以,恒流源和差动放大电路简直是一对绝配!
恒流源既可以为放大电路提供合适的静态电流,也可以作为有源负载取代高阻值的电阻,从而增大放大电路的电压放大倍数。这种用法在集成运放电路中有非常广泛的应用。本节将介绍常见的恒流源电路以及作为有源负载的应用。
镜像恒流源电路
如下图所示为镜像恒流源电路,它由两只特性完全相同的管子VT0和VT1构成,由于VT0管的c、b极连接,因此UCE0=UBE0,即VT0处于放大状态,集电极电流IC0=β0*IB0。另外,管子VT0和VT1的b-e分别连接,所以它们的基极电流IB0=IB1=IB。设电流放大系数β0=β1=β,则两管集电极电流IC0=IC1=IC=β*IB。可见,由于电路的这种特殊接法,使两管集电极IC1和IC0呈镜像关系,故称此电路为镜像恒流源(IR为基准电流,IC1为输出电流)。
![](data:;base64,UklGRlobAABXRUJQVlA4IE4bAADQhACdASqQAYEBPm00lkkkIqKiIjQ50IANiWlu8n26bfi6PTcw
Uw/b/N8fjzJEUcCc6f7L7jO2p+bd8jdyW5LZSg+B9f/x388fLr469ov67/4ftXwT/Nf2fmH89XtP
9d/ZT+8/uB+F/ud8L+AF+Rfyr+3flZ6L+35AF+Rfz3/Rf379yfhb+m/0voX9b/859o/2Afx7+e/5
n+p/up/gvmv/m/87xtfs/+d/ZH4Af5V/Qv9n/cv3h/1X1J/4X/K/xX5Le4n6H/6f+R/z3yCfyb+m
f77+7fvf/n////8/vk9hf7f+yF+sX/lGTvAlJkbsL872k5wGd23pMYflnZJjD8s7HgNmtYQ1f/Ia
icCZkMxxhws6UBIlpAKzPS58jRAjTD8s7JMYflmpSHgIknvFigBJh8DbF2XwCmIPy+AUxB4lHiWX
ekyL20mBUVQI0w/LOyTGH5ZrwjodkmMPyzskxhUedyILVkg33PRX32FyD8vgFMQeCxPhCJi72r6a
M5qSfVyoZzq0lxl70Hhmdb2Vbj+CF+XwCmIPv1oRjoR4DKCGuejT4692qhHIlYFTM1JXXw1Gwxhs
krbheNCVWb+c+XES8E+Kkgzp2xLvkE5fLoHql6OyyN1Jvp3PkEl5xrT4X92OBF8vTBZRCMhE+ZA9
8hnEGgnkm/ZYB7cySvXgE4g18ugeqveWLAPF+Q62iPLxScfFtGAdX3/yyzu+VaZTT+/ng5b0AmiA
gkxB+WTKAlENjoZ5Vu40iT+HbcwKp+xTq7VeH5dq6NH79HVqy0NUUxB+CKK4gB2G5YaFJ4swnYY2
de/Qfid4M/N5/K7r9xlBAjS06tMPxp+Lw9ixMVyeu+Sn3s378P2aAOyTFp1aYfHGpF4y8YZJGfHu
+7ydoEZ27tJZDOf4gfOKDEvb4FFTjWv+p5L4IfMDqnI2PXQH05SvedrrUwJO/GCO/bEVrPJURbSx
EstMqhhTFaJQoIHczuiS2C33xplsZtt9XHt89HeqmBD8iiYlcuq0lG0vTw6NizIFS6ajhp2abyTT
1qQXVOq7wItGfSDeK9IC9N10554TAegdi0QeY4ljZbkG0Qt3c+xfSlcr12s1lCx9f3qGuunbJpU3
DywAOd+CxHAn4ZZAb/yhS9x7Va7iNvrseJ/AZGS5ccOyCAJauBRqQXNFPVqrdIBKD4itQnAwXlj4
BSzqjD21DHLns4WdGWiE++uJMZcn4z6xLBtdQmdgS+ScJNIM/jT8Yg/BFFnZJjDREFBXIz5pjTD4
cRTEH5fAKYgZU/lnWSuh2SYw/LOx6/zskvf4ijZnafsN3e5Djc0zZ+AqAcwTUTR4EgkpVzqRnNYN
5JTCQq15aoEaYLdv6qEoMTxJH3RCk5wIn4fLoIEaYflnZJjCz2h274UWoFsqHxxAjTD8s7JMYfln
ZL6XQQI0rgAA/v7h0jy/Q4YOyR0iyYXhGIsOmx5IU0Idr9X0IwLyzGSkpuQjbS9c1WrCZO77h3sZ
aaaDEwxYBv+sPtD19eHQYGR7aAGFmtf4DNP159DPwWukIOm0g1kSkujxUhmnyEsclx56Hd7c8zXs
XmvMX9WDcYBwWp096f9d/0fnBcg+7p+tBvpey4VcQpzVcGd6nYIzS2Yqcm5FZvClJ74kAM7YHdfm
x2Qa9etLu4nukZDlL2QlMfTfOGh4vglwujzw4c6mu2UafwXVO35Q09ilwmD13/mXUl2wWetUnt4a
s1rttOGDslPNkEAsGMmAggtgEn1ac+M4/wUhlPDFhVNcriM9ClKOfS/lxdW+Yipoc59eoh8ZK6y2
10krTW5M6Fx96e2GoFBtfWVDIAtW1SivJIsM2FUby7nqfIdEz9D+42OHKZCwKVV7t9VHmQD0Zzzn
1AOpW31a+T1vX5rAQgokL+qOtjiJ2jjOv4sFk70JaQcduiAmr8YNcJwDGRtoyN61ToaGDgJBVrBP
SN7azOgxNEEv9rD8S7GHMFNeNT78H1IbhiqJXLX94jdl27hAg7f/8VZcX95gT3NJa0vJMASgYInI
azhH+Qef+dyWnt1gLq3iTiQDzg1StPgRgZGj1RICydxGRjzeSdJqj9hjynaNZ3/uG8J6wgsG6YXA
ZPZkzhjInK9/GblL1qzCGgWrFSPlnNzqlxp0PQocCKAc4b8w0AftDGkzA/rSjaEF88WQGhjEif+G
t/+v6FBs57/++C+Pwo5ApAHgNWWQW0tVx+fXB9KCoEQAKo8uhbjofgayeYWx+vzAfF/dXZcQ1ygy
1p/tf926uUWaVjlbYPeSqd097ONzz2mf/PkN3KlyrEVOAJTXU3r40lNLzyxABseyzf0L1nuP5kpA
/kJsZpjBhLkZMHTKIADl1hDTPdMtUHhngcNhqAGLdC8zIYtK3fxR8KiVwzPPO1MlT8L/HVOg2ffv
IQdWNmaHM4/SIEfAXZ08WEoRMWW5btOJ/fZWBUJWTPRrckmEKcECVrYPkbRM5/23wY132ueOZf15
71EYvajU/yIJGLOs23E/KVZGzEtQtx3fCkFrThGxRfzjO5kbQ1Q03pEOw83fZDxES87htwEuzW/X
DM8kBU/flcwU8Qaietv8APSfMl+LvILO7NXZZ7s6vfxEHrGRqYyYN9JVaQUrrCZfFslUJjOpq3u8
VAWL2B/c9S+KjX849m9FPO/0HncVc9+6KTvUCS//GTUMA+GWvT2Ie3T5QukyJy0r2a0dOdWCLcA1
G0Lb8b3cbC56vrUTZ4SEjeVQgxcy/r34v58iGcQDFktkxRw2FTmy/rRnhrB7zsA/5gg9DobOLZM5
JUaZPJH6cTf88XXbf2h85QCGeUtJKTTO1b/X6xq85143IZQliGo41Ei1I4tFkaKZ64XaRksxwDoL
/s84x96M0aPcGDcRQHGmK93cpHgS84O0poQi0hj9cEWwYVvdi0dQN5k88AZnQAILroHy4Gklg+b9
HpVBaPNgpv36bfQoviGmpirAZd0bTCQgdvJBxiROldZbZGzyPxxEUYeFgXbB7zWkKE1N8VSz2L79
RE84ISxWxb8D8XUt5geEHKAqNZCegHmw4+uRes4CIKrvM03o8diFI1+Eb5pFYfRTGEM4bF65P1P8
eMKr/7e9jcZDg4rk0Glprnle/NqMbQ6p4CIA9scA9ixTH/f9dcB6kmXGPTC8DYJiRXU9V7Fnjm/P
6kTh8BxfuCW1BWonSngj/lzH4JBCzyCz4xxJNYj2up/nkpjiV2oar1QZu1FKs1rYCVGA22Sfmb6E
xO1+8UJUifaRSbUyWQubdB9zUSQ6AXFmBX7Rx4jbrZ1lCqkgEDFSAgSZ65DbHMy/PFQ0irCw4Ds1
zZk1H4NOqNS+ZJG7CfPu2iPi5mWGIQxErz8u0pzBh2c9mjcuakPb2RmhiFLgW/TGsSRcpPW0AoVi
qtmFp7jwIEOz2hHGtyBUU7YtkaoaSsd0s65oGBO9AUt3yK3VdF+K3cxdEU5s3U8ymhv8/bnIeCK8
vs1UXCwVZoy0q2HGND84awgSMKRSKqk1MRPsKh86U/gCwJUR9ByoJEvrmVYNvUQzfnNxneURGQmH
+nV6WfT8g8/nwX+RPzQXi3ilCViX189ZyCIf/zbH8+CiPeN1mRfGbgJAx7mW//gXGzCWcdbex3mt
tYFao97S5UHFJGkdeYGc1vcfOItEe4yVKZricsZuG5MKE38E9JHBgyVgqkgbuvRPo9aLMjq71f6m
f/56CCwTXQCblL4ALzgcv8I2Auv7GeujouqI4tEvGx4fkrmLQdDESYSbXIbCY4shARvrqWwu7VEf
JxE/xjVOxejJFheMhwCSl1oGenLpn9V8NYRz3Z4dCebqtnHcVWoiwgZN7Xv61bx1LSV9AH0Jc8MP
fV2SQegVv0TKVowvnJaBrmJMiYMiB5SKGG859kBlepX0nlDrbZM6Gvm6fxjYx+5BJUr+7ocPzTt+
iW+rdlfEt5N03HntFv/6+CQnu/QoOA++OoqrV2I510jcK2MFOgC/yHYP05BOuP2Xj/6YK4UVSUgF
mJ+26Y8yN8ZnM1EcF480TKZ88jR6mmPVcVrDrdVgJrpDalXeD0oK24f1RYrSIVYb66hBaCi05Mgc
qY2DvPSbbNAkfys6x9zI89KIVIb8NiTZ/omBDGoDpW9omyAYEjkrr5Fu9bywNzVR7+NPMAswI2yJ
xL5CUA1uXllmhE0MiTx6jZl6S8M//HQaz/BVTAe2bhYcQRkPBG4IZpqFx1Yl8y/F6Y4NWmSezJDy
65Od1pzVpYzv6j/ng/Ai1SqgMqvo4VRQf3gvKEAhcxhYyYoh7GPCu5Adbm5uzPjXmxw2Qv/JSrCo
5Z9vT1PU7HhYvavG65JDfnxbGL8J1IANCkEEjTHzDEI6dLZUEQLtqTw/tMP54hDtWjeANn9WaqTl
2ddfMuMORJ1q/+MqlEfH0EmNohLTWzG+0AOuKMeyBV7bcxJAf/BthLGcbPMBrd/1ixu7On3Prl5I
h8zqxHoOAFcQa6LAzTzCNmBbtMPMnkUM2bi5BhVmTk7b98Hjlg6o2Lyb0D9V31p5EjiyLBvetCcW
HDa/Y+/FAYsRU9VA8f26Q2JQ5sKVZzzzoU+xPTjuVmMif2qx9n2bwrMCHh1zXLhoo6mp01L3LD1G
WHH8j4iiU6mnnlfdDFYP4WdtgD7JlxQ+ikVqGzz3kxrHwqXsTFdDkbObvN0phDHEqbme75ozLca9
8Vwo7sakVmTbfK8FVyiY/89FvzrsRJG05dCZw93eg88+pC1HUn0fC9SRQpznIPhLmWMjTyMetNNB
kRrotAfjFZZqoNqxNfVIS2UwD0/mD/2C6sM9ffJqhkCsYwQxLdBnzVWkA7EXhnFzmwKHI/3OqzeX
dIrXwBseWSxkqK5mRIfu+eN2gzgvJN9F8Eg1djmEJtxVaiJmZPniiTY40JWPAoaEnn6KpHA4kAdS
lhLAUff+Qjl8CcPR6SyD0BSsLTl1FA2TZ6X+dppjdOhRXg82C/Bzyfp6A+vR44utVu1idgOLrsDd
fktFnDdFX053ocUikBRwfFFm0ei+GunK42/O8qm6yh8DGbfdQ6adNPfx8Y1ZcPDKkeW7SM2xiD2W
VYN5mnlUw2Fzapp0jT9wBqRHAweJ1+IOLo6YGRuDJQDDJiCMXeWCVck6ENudKlFsXWt2xji+iaCj
rLvY+xCeHyniDa+dzDMR4Ghu8dxpuUclcJzdrJebgefGVeEW4bCGQN1WeJ09+ZedjhKA2IVEORVL
yIP0EhiIt1RBLB54ioDAvC+zjjzSuPXrAUqQHoFFw5Mxylrj0blqoUF2bVahq7ZCElE/V4GFIeSM
KLzDO0ush++PdQH06KObkB3MTP6Hx4gmC/1sM2F4W46ENUUevcNtdJiCEJRCLTEsGVR90PQQuX28
Y35+grS89NaTY4BOpjChlWqDzdzT6Fph9r7h/g0l7sHvX16c40gD5/wURPSSl7U9rTppz5FqqShH
ZqCoxZ3Qj95yyq7BV7u3iB3yAehzFH+uqMCwIl/bQPkx2m2P+8OzrSQ7aJJEvteHhAGLRRwx967I
WqrQUPGFkQ7Dmo03tXGJJa4fFanlf3b7ks6KuHqv/3yB627GY2DXbaf9tqeInCfewUliKtVbnLUj
UZ5x8BM+Sm0NGcxhq12SMz4ZiaCMhHVazWiu1AyOxUevVaJrv4yK2VnvXisXGC3I3DLpkYZyU4kd
58wkboZxU9j7MN2cM5++0Dh9QC5V3imgaQ80Tpm2musgJKHClRyMO/ePxHDBxnywe1L42U4Iwk5A
/x5ruahCesx6G0IfpOgqm4T3aeCgvbJJeZsAkRDbv52ZX3+1DhZVmt1TPN9C1yC5gm07Lq6PtC7l
ZVDzUwI0XPqeWjUi6+1pAv+kMKNhxKsupMAlvSuQMBAVkpzU8OC0m1S2YeLsH4LmEdHtYY428HIx
4eBKyxUExeK9LqgkDiQ5+VNYwjIXGa3nZNRNQhS1NC73ZdzFNkOAEPVsZKJNinXsqK8KVtHVVyWt
n0kc4YS0P2+5fLa39ZOOf3XurO2DqHl4XG5IczYdCs3siLcDgkX4Mdw13wK5zYTmfCYyhxHBUs+j
AszAuptqiWM/BmV8/wm6gkgVmoVaEwon1hjAemVhD0TvYvBt7KkajI69XuqlR13YWeNCCTPkSa1H
9FnPDIZhAxeC9Gt89tWuBYWnKXh4joI1SkzBDKywVPdVJ71kEtBh1btJCECqF/mOYOEjDCAr6RLE
S8COr5WpW4XJR5z4kMH4ONqFDAxoxAm7TKaTMk9OamxwsF57AOyrWGVRWeoNf8GrtnY/t/gVQKEX
yDB1gWYzajbVghniXDipJHjT072omeUjoyfjk97gVJiURxW6m+kcuFFiGPI2fhLAAxRDyN4IgD5a
22XD3We5bBuA+VscGJZvzttTHooZYnvhuLiHMNztTUHOtvItHKzi3kwxh3kI7S+Cl7DJ5odvfZ66
c313JWaV+wF7nLGFEyXKGsh/ez//jeNGxmHYOcA97cHBa9M44Ba/HokV//9JmaayDv56ZN1AfnZ6
oSRllaiShduh/WKOiv2h4lYRsZqhpomhnFZNIx7Xc8X2HWovMgTnzAByPQ0Pc0JxwAEPq4lPQcdZ
+RyxZ8fDAqH66m9zGjvwP4a5wPjEy7XdTu09Bb5JJkuf9TnvZSgXzZlhB+aD3uplw8WBicEDtXGi
B+qHzLmj5//SQHB6w3o9kQu13SBapRI/mecLy/yy0dl7dUxCwE8Yr9YDku5N2cN3zwHIL8BzvOIP
uo+tB7F4kWpQEPSuQH2QJaeg3ey+cqoGfmDqLurWGZ+mpWV8ihiIQnWK54mt1NH4v0iXTM6o6HY5
Ty36mICElNWFq57122UM/AWlhJe2G2LvgBWaMJeootaY3jkuKfBAfgU457jNOts5J7HeSVuG7PEV
ukYMymbVClkltgSAjwbItr9wqjUP0nX4Fy23yao3gUPwT73q1iO83U0lRAQIgQSenBdRNMMpgJp+
tN0/Sl0UbS3D38xe4lsyIW30b0Of846zGYKBIu93aDxWSpkBvdq2StA6H7bPs3tZApChKDDvzGwA
ove3RdkNK9oY4/gnGa35biEwqqrrAhL0URSbwCYHipge+CfutUIZFfgdnuleaNlNWqr+iQ1DM8pc
gAk3pyvTJpexgge8efpMjoN31l1PAIbuiofwm9NsxjclGfpM5LXB8tuWFPefpTvYBvsQuzOS9ZI5
VGGm2ziE03TY7C2O0FpEBnvOJWs00YO9z/th/A9Rn6B+/E60iS2OJqYUy+vcpx/h3fazaJQOzdfY
MzOlWlBE4ryZ/vIQ98k5OanYrzS0ZcvdA/QJ2E4KsveSANaIqgmPzY3rqk+DC5J0SXd4dTlY/W5y
SNASBpd9GvG2EhDJ8ztkn10GLQ33XOJwnJgsuYdZc+hpS3MABFocVphnTEAnWIa/ruAjTLgC1yPy
bdUYAnIa0JGB3exvcGLacqxr0FXZSTOp5kCW6ywedTVTlqY5pAkiFCaDDBvQ0BqLBrZ01d/EWktr
XXjHpjO27w447BZZ0nY28dWcP/k17Fjy2S9e4Q3l25fisBREdW14xfjegwLgMHV9w1Vy20sn0Bdu
2LC8hSQLDAhKC8G5fMUMUB4w9TfJkDWmtHJ3koEvdjtWmZUtCB5HfKRaLNfxLFDV2mkDFMYCXSA3
GlyiL3fsyvUgLKKKnVAJ7WrapDIKCp3PyqJY0TF5QuY0TCto/4YzoJG1bFtc7r22eBU42Gtl56Vu
eks0PCnnE2rNxg+SPPN4cW46li/YL3PjIHy2Ob8IYnBmd97T/kuNhwXfgYY/bsh6tqY85EppUoNj
Lu+XJMO+U7ViRb+5Y0XnYwqBT6KBhPVcAsgkfjEQQFsEuIvsv4ak5WBYTy7CKEWgoT981rLaZomx
94t7UHcvw7rQ0uJzC9J3c3ARddCC01PIUDJAvuQ8xPWxlmTeT/fh7N3kMFBc9kTVjcAHiRWbPWLZ
7OsyWg4GGvba3nxAz4F4DwQLSNYR0HKHLDXSbE1Ltt36MxAh5eN0ucemzMxmQ5/pJQQbBIf3lq62
Cnf+Qbg3iHlI63kU1gJMg02VSX/9aWR+f0O/v3Q1nec7mzkY5jUJXmh0F147vb4fZLyiJ1yz3P3/
xl4oNP8Vyf4ZOpT+ZUYZDfLFdGNzXuCgYixmHScEL0MlvrtEtgyIuBwAckBXKNKT4qj+xLtUFAf7
1ZMKfTArgAPZJrjfQTJEjb2RRKYvn4QqfIw/NnhilNXMy5eDVarHMaKlxBMr8zJR99Ia3VL03Icn
D5KZ7HnSNaqBc2gIPk6tyESrbEL+buULRWgucYmdDa8sps4IIcf0KMThAVAFbZw6JH4B7xOvKpbk
nboiqpSaP1ZjzavD2QDx8xJS/2MJSxQXQvhxI9rgBbBfagT3dHdyjkrS7Fm25nAZ9P28kAH4UTSd
UiZ8Lm+TjQvIqC83+4v4IHcc1TOEoAjeAI1nCLd/VhzQFpPEOahXZGLuqnDZLGyioI+YXkYq9yzU
EQsjlMkqXnylU1PyolW/KlySHn+OtNh7pkLZxfUymLkArWwyKVtZrtqzSeQCuaypDKE/E/PWHf+q
2LKnuq/sn/4NQpoT8HeOmZDe3HGgvBGGM7UmbuEsi3znG/HjPRW0V34f2R61f/TZNWbUsowCVLJ1
+uMfpuiwJ/PXQNMCVU3rxywphPmrlhnTFV9NBnCZ2QaLC5tOV3DYKuRzPiWW+GzBlz0HMPim/eIi
9wDICo9o3uGzbKPVYhmH99j8uzWuY0sevM/qflH3pV18KN9OYyg2P+mzu0ZMIIvmYlmtL0g9loyu
+NFiQ9AQEny1eTm7gSdKjHQRhPT/e/nMi4pBZ7vZKTJp7xE8FeVHKJbaQpaD/3Ecxn65+I5u3J4q
2WCpWPp+R9sL7ASySQ392IJrdjkZ/QA/QgbffRexn38FzjIIFxVGQvI+j5So0JHgPI3a1COFH+TC
uHAvCNelWKeCxumLKdZ8RrJ5+tfL+0bgE2tAE/XdvlMJJDVe3ovx/FQLf6K6glZbYWWi6+wcia5V
LAcR/ek8Ttm/Xr1A83MCrBiHZGvoy6sQOGnKZk6sbnVufCrZ7qDm6cv4BTOr1VHKhwzhAAAIayK2
VG4/Zin8zne8e3opxp24UBUR9Gks9vYDQ2L8IYACdksQX9pr7eV/i5dZdQltd2E6tmXvb+tl7a3s
fHlh4RVTnKWoJ1mFa6WzFWJo4HO5V9RNiuyI0ynPecmPqTR/SyWusbmZJkAfiXhhtvFhges9vBqv
0O6r8UujKpqE2yY3C1ZqLN7R9yetNkOl3BcD8OPQjHthQHdmAIAG+CDcWgZp5alNlBZxPIAAAAA=
)
镜像恒流源电路简单,应用广泛。但是在电源电压一定时,若要求IC1较大,则IR势必增大,电阻R的功耗就增大,这是集成电路中应当避免的;若要求IC1较小,则IR势必也小,电阻R的数值就很大,这在集成电路中很难做到,为此,人们就想到用其他方法解决,这样就衍生出其他电流源电路。
比例恒流源电路
如下图所示为比例恒流源电路,它由两只特性完全相同的管子VT0和VT1构成,两管的发射极分别串入电阻Re0和Re1。比例恒流电路源改变了IC1≈IR的关系,使IC1与IR呈比例关系,从而克服了镜像恒流源电路的缺点。与典型的静态工作点稳定电路一样,Re0和Re1是电流负反馈电阻,因此与镜像恒流源电路相比,比例恒流源的输出电流IC1具有更高的稳定性。
![](data:;base64,UklGRrIgAABXRUJQVlA4IKYgAACwjwCdASpvAX0BPm0ylUikIqIhI/PaQIANiWlu5KuG/KeJBvrG
XpfNUr/9g4AMh3YzPP/OfnJdUvzU8zFwXHozdMxkLzRf7T+V3n74uPF3sf/Z/+99d1/e0n+V/af6
9+Wn9r/cz8Mdsfy7/nPUF/H/5J/bfyc/NvkHZwPUI9jPov+O/uH7o/4f5H/qv+D6MfYb/L/cB9gP
8W/m390/r/7p/3f///U//P/53jzfZ/91+xnwBfyf+k/6X+//lB9Q/91/uv8p/p/2P9wH0n/y/8x/
o/kF/k/9Q/2v9+/z3/y/zH/////3uf//3JfuD/9/c4/Wz/2kJ7APnHwWOlTl7lUFwpmUsNbQkMsa
I1vP8zmbc6K2Tsl3nRU/KKVgKmLMm2+rGEOaBF7dPiN6ZeQMhppE9k7Jd50VsnYMOW8vq9//b3Wm
lfNudFbJ2S7zorZOEuiUAL9+646mG3Oitk7JdzP0ctwFU6T62Tsl3nIRaVbcRpMgQb3WVYhwNJ9t
Je4tNvUjFA86K2Tsl3Dv4QL7WKYLA4ueUsTCRw1COnzKjNA2t6upgW8/C+CSxv01r7etyF0FG3nc
vsuU66vB50VshAf724mI0xI7K3gYTukkt44A8nGnfxqn6qfFUuCO+N4b9hvTOWABuytHVJUFPo7S
NHom+LvHzB8nRQOsoIkTnsXGeMxYcMXhncgnewUc+CIsbRJF/fRPKqRW/+tqw1+8vzo3XcQfF3Oe
aK2TiyEau2NrEy2Ed4cr/HhJvsoir45FMIMv7VvtKslPw4xo0rHFzqI6T536aU8OhD1QG5EGM2hQ
6mqNybKHMcdTBQ/Jd5yp6kp9jfNlKGQeOsiVCFceyMq/WyIqtNKxxc611ANbYoIIfUlMPyk12yLx
WqmlnsIDAvIl9t8m0wfItglBUTz0k5zldR4QgUZnJ3OS6l+fzU8OWUBmdOReqr8CQCNWEqbMfAIr
GpObNQeeSLoJ/t2eJvg6sT8nqLaBGW41+kHZAiBlQvIFvaEWoGjxKg7sACm9mcACbI00q29PqLsj
t6sBrfFIr4inZ1bBmqiVawNKLfXbSbe/f869RPSOMVRHkRgCa95FXb4KwIK+n9pbU/HGVhzWjV18
2HPT3mLPAd3cC2bS6Tr/nrcjb13xr9lGNuenHao5N+/obXgROfvO6mGqc/qJ5nz72ukKPfq3KqMC
5DLOdKdHUnd/QOy9UrY+dRNuYf8fXsE0Dion5+bnRWq2v/8lgvheHBkpiKE4ewyU8+yFSNmHLE/f
2icLJDrhu2hw0EJbNmjVd+XOrxBo1wgU+t4BO3tWEgGDvOiqBwQ/TcmFS8WQAbNsx4hSfEzAVF40
uIcWatqqsTBhwaCLbnWfB0ZDHVICCRpiI+sdASMWB0rwE+oRC/rJdwkOphtyZf+VrQAIO1dJZ6lw
Q2i/YdVN7mTn3/V89yVxlUWTsl3nRWyLyCJd5QH3PQYfVhhJR2qqdnXUdhc+tT6sKjVJop2S7zor
ZOEHAIkBRKAK+kKuyXedFbJ2S7zksCbcC0xzsLiTYeXrjqYbWgAA/v7Iz4iRna+eA0OaNAJQ/yaq
wFzeuJ5+ntuIREmw2d8fgyMVdxg1lTDq9tYFjof5XHfS5+SbXfZzEn56Z0lNgkXKMLRaoWCqU8Om
0tgZStgY/WWEqhi1szizY9o2VQdJIt0A8l28Jv76S1k0kO1nYDHeklRPVU+M+Zon0zx8RxFHzNDW
rRGmZVLbVFWFWrDBMlM4D26IeAr+WgMhSG6K4n7oyqPAhADUHLn/b8WRMMepCoSMwWsGC7Wzc/sl
uFQJNEGngHKC5K5ukKjhCS+gwBoWYox5kmBs8yyfI3X+94gqkP7FJNI77brSFwT6AT2XHYBZoLlM
szsg9BmpK2wEg5aAm+1T/ad7cKWIZiP/lxg//CuC+9oU7+kFdo1PhoZV4vEnNJbTaRZRkYeKZwY6
B4vN7n7DDvnJ2TyWlJEQIKj1yPpo6ZRTWNEoRKH8Ip0ylPe4y62b7iPKd1o/i1StFsmjzaaf6Ryd
tTuvvXYvQ/1TMiRzSTFIhMgyKlGmewk1wshzl+7aatkTrHSTtyUS/XPnfAZjWFldFXK9NKSguvko
QcRAt3XCQUu9JwTBN6ykiStM5yBvYG7z/bon6WG1qQBPoTLQm4bKkVhQXMoBNPaeABrdu4Hn3OFH
IGtvHBltJ2KkmP7TfTcxvDo5pELkTPyWqXdUfsjKyLsgLs9We2YZ8yLg5pop8ovgKnWpWWZuh4vZ
MpdRi2uh9xDa8fbtjCeV7hBnbZLZicQ4EMcO0vgIka4pfS2OlWmfLVvvELhGF96Wp6QezgDUSDuA
/P389qo88JYTzr/ZExeZXbIKbbAFEBe70xmMxIrFwayRshn6K3NoL7Ugld1LMHedWl69gU8ZJgQE
4wA+SZFC1GaUKPOWK6z/22zaYAC45i1MYiFAypeuopHgpMK4X8W5YBpjmbNDxhpNZ2CZwmjwdngj
EFgEml0cfO3BtILq9tMWriPHFPnfsO3yGR5p5PdRWZjKc9eWHrRkHF1q0wfpWMZlNQ1cz7Max1te
7OJoKwgI4Oox1OTTG3bUI6m1Ja9JYNrC5ulyy3A+41ZOJflB7IXn2GEtjwTg9CFKDOsPaywNCizE
wyr3EMMe1hyXVA0CEgnaedbU0sykbFNgO8OfVIlYm+c6go2igtzg1uT1XSf9axTGxQKQZaM7Nh0e
80IodLmHIc7f5M2u8NrBIUmz/j3dj4c51CFgwJdMkh4uRABqiZGZEVRqvueumJbnvIfX/XOt6Aqs
D0VbOkxYrgGLyQ9OJB8Q6x7DkOOVZWzDMRDIY7xAdLDRnX0lUp9J/n/Dx5D3TXcRoa9YDbUBw2Xx
9EZfKtqFfOOE0GR9Ri25Z23uXIxnknip6hw1013hOLStXV1myt8fzENrpHRhxsqDAVSygn+ohJzu
bT/IrNmz4aLxdae0tI1Nmcx0XRiUx/KInOvYzB+XkthShpEIiZaZ15IZYUbSDaweK1OJa/ShTzG+
q9d19KVEt9iCCJ9AuuEEgRGMBkJV7rXVm5imSE89G8Rg+7JYO3frCtfLCRi6f49RiQiNanCxIpEH
P6qbny5HvLQt2nXZ7RYVOfB3q9w2TGC5R6gIf4dzmmaXQ1ExFdLhVJNJFkhK8pEveHNs6ifor+Jl
Xe7WXaUijSBav70u2YLDenyvSm4wpX6boZZwVX3xZTWwfQ0TIsR5w+7p3vq4VxQNuHsjdq4XptOa
oqLAdFZzSwxz+dSKROpruYNdCdFnsEZxsmTFEkoaLVYc0i5RLFM7Hwp2f2MRAiG3PfzxHq4f4I6W
keBf2VGMVaIKYYHArTu9YQm/EicvH+ZR/ZhuZh04f8fP7Tr8RuazVtR6Sa2vZZrUExW4rzY+ZO+7
4EIJz9r8tFHQnqsFFaTZemqEP6DoadmurZiTCCDSwEgmrJG0qhgqPneqVo2GE+oYEsQdm2Qy0UmJ
eO12ser6Cc77W37nnnHI/e9+DVxyD2MLqZMjo1yEaFv+cqOiIYk4cguMP0PLOcFoxaghPPfZ6O25
pZPs3TmyHSPgjdPh7j2TZqr9w7+L210w1njJfMikE0tT+Pz429cyWuVwSXOy5KXgJI53mFckJELx
fBLiTdR22QcvWlN05J7af8aTyJdtpYIN3sciK4PN48iGLQ0HbJFOWwFhpLD76Vp1LhG3K3IPHFhy
CRbkwzHq+R7RNgE9mib5Hiww6hpud/1CHBUqT6X7R0lMufz68KXtOFhCEgKd1khN6IO5UFrW9K0e
EVG4k4CVgKpKxUtfBezPjP+BEMBPsOuf8SP3wEoGnY+wI8rpbgTIaYG6BO8R3IMTzpZOuahv/h7e
qZAopqR67pSi7S1ZulvgSu3DSvk74NzgH/M5genzLEy//rxxgKk3HWTlSAFmpYLNt3HVs3FmUOvw
LT9eramyxY3FXzmbcwjnVf3BY9NSGZZ6bMGqmGxRpAIdfj7R6AYIdbAwliQVDf3g1z4vtE3uz2+D
PSX/4YbIt3YsnQbaHNhQiwKULN4LEJeyKYX5ribvbKBryB7ZOD34eHijHhsivJQ9+Cb3HEcGrUAw
xkWsF4qaGO5IhL58Wjzh9a642KqYtGETCvUCRDQkDjA690PKTQp5mZqXnTfmexsXj4fqy2v6HKQf
IkmA35TgOUBf/h4Gov8VbwKN+hKHJWeSeRBpjuZARH/KzN5YWFO/pjWxMAmBAm9zt5q9jK14GLt5
cqhn+mDc4d39+HKzfABZNsPzB2slTowRGE/j1H3qYVbZtX6FWA/kixoQZSK/9iwHejEslLqjTwyk
IHW9NIAjbnw2ApAg6Xs3Enn0pJGWrMXC7022+S1Ez4D08fJjRggP7v47ucOt1z4N4fWwTT8EdU6G
/6nVA/zyaIskHh4ogBymRIUp2e5xIE2CIl9/9kJN+xNcMk5/b6HAbUeXXE8wojOkUim3ccRPDUHr
gbgB0fbAWMxlfvvgP+gLJUhoCP72e9rYG4GSlrKGK8IN5DeKE4JheitDuWmkORbRb/N1syLDXbx/
R5ytDRdQdRPt5TscUiBczNzvEd3MxJgjA6xQ2l4tPPSqY4V79ZIut+FekVUSKgqLJOw7grta24EJ
z6/QlSRrDibSK7DQ620oilYGJqWZyfwnwiUHgLZB0COJ3o38/lYEOmMGGrwPRJpHCj/xllezLHQW
M1uVt70wLBUMMBIAKTov/Goytw87ySE9a1PgGsuMoQdddC9T5ZLOkfr/QjFvURdpcE/eP4fWuU0U
Tdh9IbJ58I1kqJaIbGcXhA3Z1FaxazbFRyyfPIotQzgsKT/k3GdLKXgPRU1ThosuwxC4fOTH2GeW
sGNCjjH+gLiw+0PFp7XoCfWEr8B5HMAv5LxbNgsc8Bs4yJOWb2OaCnlQyn+nJDpeTzdb9zM007ks
mzzdYPZVvx+0DUYyBMBsN/4Sqa+bKD+JjQrtVuZtxg6rbhTf8AI5mTgD6NCvNMlRhQjhpzig6485
MDeNhWWo9Xmi2pxCvMtp1DI5iJmZVwiQ3AKEtkWW6Ga1xSAo4ed14AyN1KsHhEBOU6NbXfQbyUWX
GsJ+cYbhRlOo4c0Q5IF8g30ueuE4ThaaBwDjPU07HXgcDc3Mc+vOnAVI34rPEcOb9ItV57OZk95N
zOMf+6W2rHDWqsfosrxjIE/h4c6uaHpEy78PjvrlPKX2OHz+GvhEtoY/ZMY/w4PjATrgDurcmEHJ
6Pi5ZQZzwRDcKRSc8epccXEc3kGE98i9P07MCMFDlFD0W5CdOll0Qz2uSwCAe3F1ZNTGF+IQ75CB
1AWIiAT12sFnfWt9USB7nDIGvTEcDz1qWAb9sBe716lAay5Te5qtF3PqvtQum4I+d8qG/6ynfKYC
YNXgVGBW/ZyM4nbrFuQ7ZGcXG0UHKPltOCwYczgY6ad3yofh6Go0+KILZnyPFo34GUwa+Egclrbu
LNwBe+xcyCUhUbO4skqUuuieBr1AiwLl8ZhqKOoKA/CGgDcpzZy8xKUSp0QI83bwbOsx0khCVaH+
RiQHA6bPtnIEZBiz26zOlaDPa53qZPB0MwhdEkDohxDN9RPYaPYGgfSkuRgLnED4wNhmav4ZYE5v
QEWDmp8id8a1OgJ33yRgqC/+NPTxqMU+I7soQ6xRNFscBK4W6yX5xszj82UQ0+S5ej3mJ++X35xc
G5vCb2AkL/CyrJ/L00+no8DNCesI/gR4eMM+rzc1IzV185mYoO13n6e50QZzr/tj2peGbU/7e6pr
YhLzxxxRb/vRwpULD8dKVsbz3n2+AZnX9c0+omlnRw11Z82XLhlTeBXx7inYOorUhQX/p9YXzBgN
AMwlm91sux/8wjGml4sJMg6dcKKsvNWn/kdtBoanRg4IiXCOCREv36E6v3A7qGFB4AH6K3oEmqQw
M5jkM/f30c4xkmDJqf7Fxpkdu0H22F/u/gGRTS5PzUpkrKIhnyZAlyDVYTE9Mbtr8Pze1+GhRguD
VHLrsMnP4BpYpCoqe3OOHy8Nc0HIhmlEJCGYmUAXXcCJBh8ntlDIM6ImZJqK3GOYPzh99sKm5Uje
AZetauCrG36aoM7sNqcxBYK+wLrXBUQQ1wg+ZPTAethnvv+ptexOv1KM7oUBgf0yHO3xSkI5w2nv
FCew4XZOnORbWZMuZWlSuU9XpCraoc+RClj1W3uNo/ydFsHfZNlU7K3txDwVSh5f7w3Za7detPKF
l8DGyp47YvKiylwFk4Gb2j9QWlaZoc4JJ1yHnSymbISE0JdrfePuHhDjZBLW4ysLD57WU7OO3CzF
4tcQAiaazZbFErRdOpaKTPFXtmbXOLxNWIKPe5/xlhqyWD294wG1vL1K5qlSn+NvX5125N3lxFZ2
vAAPIpXY3V1JoIxjrTKHPaQwjvJ/Jimlq6rm/PeuxUQVZAykp/IcdeWLRy19ItNDJNHlYJwNGjcm
TjUv6OXZ3g7VuEHHQvQq1qso07Sa6olK8HIRod5oGf+Q/aVe1V+pNiCjEbNpEyhjntNzuX4cgyyv
JY3AmueDP7/lkDHi1tUQbwgJAd+mNJ7eehkdz+OkfEykvpkyWg4dm2m8Nu07HKmshBCd2511rbb0
nCfUBjL3uWxb9CJTC67dP2HF7/QR1/uSZuOybRZ1IBws4ayRcsP2mmgKojMzTIOiSdWJ1E7ErO3Y
aJHPPo7SO4RsiMsFRuGmeXpfVDQw2cx1uuM0Odrm1bKQVNVW2C/RNDi+p9WFVio19yPrqVKX5ttQ
G34WQWQKjOIzaVwOCYpmqn8ofViDkfcMi+C4hzywqkFvIDj3GEMpiOzKC42aw+HMSEndQK+laVWg
ve8AhnGE6KTaD4dZQrRmLcr8OubPs2oqXwKUSZHcH+D3T4vhIiAKiTA7zNdgmRrRkvEvBFw2dB7S
TevD+K8u6SwT70yF1kZZomKnBzjNHUQXko25jVGn0EHz6U6TfIciA/KT/0BqL+dQoWI8/Dft/eeb
17/2eHJ2yQl8187hV9Sw2RR/KK17miGvCmrEvJV6atcMuUAU1K+/i3520/nA+ltcaJIdmatY7rDK
5/TO1+UHlZFb2mR/TNEfdhTXVm7v8S96Jojb13DjnZHXIegwRe1rheJeXFA4HYsKSJY4+05dT41b
nrkvT8weAF4JBwGiuC8rhUs7fwHBvrxhP7G5rl0P6XPmk3uKmk+poxCaPs/MQWfLMGkAr+dYMp2c
AI+wQ2/K6BooRsZ9ph+GQzi2jxqXwzk/9l/Bg31evxl8IphaV6VduVwxHn9ld8WhydejYYTrCMdG
H92Bjr3PqW/nz6LTBpPuNYz+/+83myyJmleAA3qbllilEpbWE1lxvba5dCO4oOnWptKDUFFZvKx5
20X+Aecpj9wc2vLFgfRiBJE+8G+Bl6ebQTXmM6+y+VmZbym888nrprSCOSH4dflDJtHWoPaxTeZN
sbTxb95t1Z7spflEfLPXLWhVY0V065g7lYr+23NB3opmtf1dbAmjroL5d+od4aG0Jif22Qe7r8Zz
B3I+mZswpUTTpeePRdwGaSQ1XS/8yYDiHJYg5JDF+DT1yp3BSPmd9m3bwnLRsJ0f+akSLvQnJ4Gj
q0qDVuSerU9yqWwJ/pb2LjwtJQQbX/VX62bLmkHWrbpkWtg2DdBaFU+x+dktxLB8IjX2f9YTBWpf
wsqZpzLBcsNF5XPR3bjbA2AO+qq6T5xkEnc+k0iwQuJJp9Oo8j/p8teVvU+DF3r37ZfPVPoUdYNB
EyffBlDT/pnxufzwamdBSrih1QDR2AGvhFzEvl4+Q4QgFSN5hj75Bhlo670DkVkGGE9KlxrDvZrk
5GvSfxUb89MysNwyDnldl0M7Kt3k+N3jmYvQ8OvkMmE0tAnGhbe74avTCoPxb1jt0wHu7wcEgy0I
bMyIKv3nYf99lks/wlgYSDZ+xsGKbXNrtFiKPa2T0fTvY8c0QNuLMjpEEhWoH64HtKpAE7IwdPU2
BC0XUMvGKoLotdVye/Q9WNmRzXUKExTG38qOL8kPe+hOpjwJVbL72MtKjpiDmP+T86quDN295lDL
OSOiaLcokRU+R6tPwIHwkOHnfrDWujvsABSmfXYMUW/5NrMlV8KRrn1bdaTKs0biMOsMixBAAkWr
jQeLAyIGpdP21v6CCjGhYVus0HzDMKcUoonRIV0caodypGmdJOGXB390gMOQa4xHHExTQyqKc11i
4X0y5KF+iv7X+9W6zFFAFEvv/yNcyHil2VKUgPRWbSzKMV588gb0wr+g4pD1k9Rro6FWM07g2FJy
yHWdnEkBtmUIccJoZobRYt6L007qWS7ERWqIWIwv7Dxxe2uo/wln1yaCeDuApUw2TtS+9JE4Jalm
Uf0EfJ6ger3exB9e6h+bBki0Br2w6YYpl6CyLPlOxP9cgQzoeNPXwO1ycw/MzzuNXhbIpeucf/Jw
8U6KH4wWSvHHmXkl18MDykFwG8PdxIyCX8ue56DG6/Ej7/gN3R0R76Vomm5jxoImlJOnE9F4tCj0
lE1Z/sH9R1NUDuZkdl3Zbhx1IbD6YyuVFnH1Gi0n8KtqI5GiCwR2q0yjTYfUVNC7+QXwLmptokrj
gy8hWMRTp3ajwXxFULyqOBzXCxJVPFDxTgEZ1o9YxbWk9sh/33Ef3sc3j9c+Tpbw7En1kLHoQ3R5
KoKxh0BNWT91R2bCoXBhj5BdElXpJdE2j9VSZR6I1NtzE8QIi4qRcx4nfnxObk+M0V23Fn8788yT
OZrcE3YhW1sU0sjk4IH/g3PmfMKbaNYze+HP62lOn99vJ1twixrpxdqXPOBf9P2VZOWxGOwkGfPt
HvIGLa795V4jd/bLwgA9wawkPWwdP6hv82obSMhx4Ymu5CAhz4E4piximFzVUU8kJtqydsENIbWh
g7foT7AeU2z/zov9MNz1YmyVGZPp6UdiN4oFxi5zdEQA2NZo++XSyiwd0Ey1NxLuxywINQMQS7+2
QRGSOLW+eQDqSJ9T/BbwdqekxwMopRxrQSTIxlQp/HyNM4k6X9Lfi0Lka5VYoOVo0ZDdST0S6D9N
a/Hsjm3KA1mbgQy3IHMhWv2LctO35ReBCpwOdROV4hu5R78OAFE7fzDjCHD8neRX5nwshNzdFpsX
MvT2FUhNjPPJHcBegEhFJsvBNtjXyPg/mjs0SeJq4TncIe80Oa9DPQfov7bKLjj1IJmMvsfzopLf
IrqF1d35EU8inx2bjsO2TN2jbptHFN+rgYFTm+Y9uVZDTU+X1IcUCLdXId4Crk9nYPmZtOb+IoBq
ypn5B81G9aixvq65EDds/dEfodAHSpMcu6VwiPEO4OhWV2WAyIyAj1tMcJGj9JXfFpg6rogtyvH8
fNXr+fRhphAz/68DT7goOCF/aP64oahx6Zcw1qgcPcwa7bD/iF5psuWAkR41whPeuCghxSx/tq9P
8ZjBcOk7Dvmwxs/SWWhv7S+wICmnV7djzZOCFLgLFE1hs7f+71IAZhdZo1fplGqO7mDjrYAxnoJe
YHPjoSsPynGf2KyseZpAnXu1tUgrtJw9LBexXbeB3FIjfmCKdoQlCmXxxUVRB4K7FvbRfLLvKTqb
Iig5NUoRfNdgDku+hbQHi0GqbtZsR3PiyHF6mL4PWTYOlnV+P5mw2aoxeguX2I/mwGhxwXwy/Eb+
f7nN35GJ+otuxdZTDNF6qIPFJU8GchsXuw3/x8nAKXy+gjgJ/Ib9BteM+rJHsMItDsxqh2ufgaxc
JSnVnHYaZzvJTIQTQCuhRfm20gmSzmEIcgPSucWkaQwAvwee5giLV/ig7vHVj01vTZ7VdVWbiaXZ
UW0o4WYBtOy2XprwzFAI1EEMVNkFmo/PUZ2AuTGiylwbZfV+p8bd7YiNzvYMvAMK6eDjcCDukZ/J
q+ypCFVZkQQEluZsLx3SU0nBozhkqvmqW8pjrcoPeZWCAoJnfEIj3GhoMVvxNqy6t9xMAYBM+Gt4
lUdOmpLGnEzEF3Q/5kc6AHhZ8nHv5u8/lxYPYfB9keqwddGdHLMlfvW2lR3OSmeijSg55SvqmPAb
UVUUsHm2NY4eFXcWY7UMPl60JoaZQG+taMS9kN5pviRzZPV0Yi1+3q+krL484aT6W4YIAU0J+QqB
g8F2uVswITPWGB8ZjpDwVDlnzWomcT2atlmanMwzE2/22c3ZYpUbJXjsCOtEuQtdeBOWZOJCAwSR
InvT5R34Xr+ZxxX5WGGlN4+V4YbBBlXHzVTp4elV04jEUYhZ6rUdHMiJO/4WMj8zt8VFIA3WODXS
EHQ+C/HmijN+02PeUt5/Z/38MftKxDyC4iVgi1IotJGXb6rzUHlSAmQoAzmlnfEwHVATCLhR30Nw
fZ50QF7Pu/tbJTHMOyoCPcSEhDJsJhDDSaHLPDccfmUmalflI9heemxqZQBqyjWW/LH2EUVl0uw1
vrMji/1FmKtl+2s9CLDs3CpUUfysSeK4b8CYMX5+03qfa19yGed1A7GBQmHkSrSuql25F7rrQPyK
IRmoWoMPlky6deE4VomxAPZkylNfhvaSnNrME6Sv4K9Px5d52ntz2NSo+EaeOFcrEmwBSyMY1Rep
6RzmbNJkx+aP3gxCk5oTh1JXLIDleTDWf2mA73EZsh1kfA2dAPyEqI8BIyTeAygd5HxIIS458KYb
OwKynUctBDYI7U5dvQvDIxwfCzVMhSi6nC7UrjesUoGyDYCx5SePyRbGOR3IDi9iX/NlYADT5KT/
lgNaCif8B+yS8c98ivj5WldLQz1UKTcyWiWNY1RPsJQsTideD6Zn7Cz+FfprxyMKv3UYqDL5IsC9
/1DTz/ByiRW4yu563sYgm2ETwhWDP5tBoKoZARpT/OVcvFU9g7LwKfemnpjBKCIA5RgDZB5ibCV8
S0PFxBw+392vRf4ilpg6Q7XCUbslsl2b+d4CR/OXynDJOm0jEY5KI8czeHIWLMoy8GunsNLPcTdI
3tkM2/mNCmAqc+r1ZwxfwAoW/Mm9tWKxjeBAEeFW4wb/x5/jHJqqOH4kp4xDo9pMsXIbx+p5ZAg7
I6pUNqGpRPkbWdZERNXcmY91oxfAMrpMvtd8g5OKZzkVe1HonFCgapNgaAAj+h6a+UOhsCUv57gg
PkUC85JtP5Cwi4UYdpYh/6oB1neS1skZKt0tKlxbxI1N3SEv6edOwbZoleoAQc61VP1uwAAAAAA=
)
微变恒流源电路
若Re0很小甚至于为零,则Re1只采用较小的电阻就能获得较小的输出电流,这种电路称为微变恒流源,如下图所示。集成运放输入级静态电流很小,往往只有几十微安,甚至更小,因此微变电流源主要应用于集成运放输入级的有源负载。
![](data:;base64,UklGRhoYAABXRUJQVlA4IA4YAACwbQCdASoyATQBPm00lkikIqIhI1M6OIANiWdu6Bo38YpjoAZ1
3X3reOh/16BHF29nNTfqTrOnou9MJ+yWUktT/vX45+ffiq8dfsP67fvJ9fV9v6/wO/lX2P+w/3D9
of7b+7X4E+5j8iPPX45/0nqBflP8u/tP9g/aH8x+TCAD+Q/1P+8/3/9zv8x8pn0X+09Hfqp/fvyb
+gD+Nfyf+9/2v90P75///pz/df6PyQfS/YC/jf9L/zv9v/Iz6jv7n/df5D8dvb19Df7//Afld9g/
8q/p3+l/vP5RfOr7If3G9i/9cf/gPl8A1NKz9K4LM21eVfoZ/CscA+jOWry/Khi/bT/+SPvb3aTQ
kA/it+jPeMNOQnA3h8vyoYv21LGFAt2JhvGvmmnlNUMX7aljHv0QyP5Y9+j39CHybaicvMcGCee6
T+e3d8f/TdNjWlQxftqU8RwAX4+0tCJ1bdoda+l+DbF7AATjlpQGJ75tKZTnO4Uc6KsAP6z8VZCt
foIizS/K1hbcYTEZKp6O3OAOvaXwEttpX9SEobap/RW7zbt6f/Qlx9C1P4l/5E9bIyjfygDST/B/
iktMNQdPlDF9Tiex89eNnt6oZAMrntQJpx1GzKRvkH7pUy65s/KDR/C/D/T/UN4JTUrI5HH/pwy6
qlADfXM2cb3K3WOsl01dToYY3FTKPD2RSaiMce+f3QQPHrNVkESJLQvYldxs6gsWycuHkB74obkK
dYCpQhwrnZ7JVupjwl1AaFoY8RdpyYaQccm1k5vWHuv/m1nHr9TCClM1XusjjlOxSQ/O2PTeMNDU
MoGu/IIx+rzdYvYP4Qf/hqUUMD5WQ4tqWnLetTFQKovKuRNmJje7Oxg0wPfRpMD5rI6RQxXT/rpf
gahK9A0yCF5Wj6Ckz+WDDyFMM7K9hAWjXoxYyJgcUpyB73SLEz3miUjffoTxfx8QIVBkaguGL7IV
KGMgkEL7+4X3opp0TuHTeAx5+Fl1WUyyN035QdiU1QxYusSiaG1mOVNPAMQVPkUury+X4dSxj3MO
CuARLzOy+MUP0HU+hDadpMbK7V9g15X6MUuMXDC8oalRWvL8qGL6x1Zclj90KZaoX3RRJhiPDjku
O9Htn7PUnx4MP8Ah43jdnAkpqhi/bHUBiHZSyxITfKhi/bUsY9+mhp5Af5Mn0YgkUuQAAP71QwHe
h7x1LbgXMeRJbCgull+Jjzf2IzGN5XHnBIj7D7UsuzQRH1egWqPYyx9AVXOZ+2F2tLuBnV3c2A9U
Zpp8KLWwgg414WkqlL7i/Ssl2TlPFkMfQkRu1pfabvwhEJL/963BEduX8gmHi63hV2IKOdY3Rh/O
Y9LeIztWkx53r1SU+feqwVR6v3poJ7ICrkvuxP/i77Wb1K3P4zH9Go/VA9iNcRUtGfbD5q+rUJL5
ho7/kKwtOIxKlITfo2Khwd27Vx/DVA3hPy+xo7kXCc7od0WFVhDJ9jbUaQ6rCdcCM+MHHQVZyiW+
g7WZpHVr1kwIchYesQVqrBTO0K/vuKMuTHTGDK1g1f/yA9mEzmZdk0j3oSvhPXO0wHQWJSVwRhGh
0DZWANLjcLoKtX0Y7OQqsgITlnw/2a6NVr8unnMKR4JgYGT298OZ4twaiqV/G29JMKdp70R33V/w
zvtk2Xqr1tqHJu7QbU5tcjiai6fKmNw/emhiN8Rfmct5Jav0DwRBdIk73SyFp1aaSAXmZYf/gABu
znkgNAf+cR5hBwX29jwn8N7UBmT90wAaRJSNSsfzeK+dD1NpyvlAgxO/YTx2CDBGYAEtWEpBpklp
tbhedCQGQy6uLIzvC0YJVlesTmVdac8guvy1ol7OKl5uny8sQyzAVkn6kc3FN/zK/7NKxpl6gDPS
lxy1gMArWWPwMh163/IajqRX8Z2Qz4fOfg+1IW4ibNL/ajmMjIU4jJGoALR9e6In+bLWc8t0d8g/
mZ8r6pa1ieQs5+flttYS0stfkT/k8oASbeuR2tGD/5NjEwwHAYhFSIq73H9ieWxWU2Cg0eA6o+VM
W+eIPvgd725mgr52c5ueR3SBIHE2Din8XKrWc5Oi6glGCsAGQG3SKhGJ74shDM04P/w8aP5/wt6X
zz1lH79NbvgHdXoBYgB7ajOVlMwvJO3GZc9xfL82nFAQLZXuqOKfH+4l/NX/kZoqCu+/A01nwcJ1
f7jKNaPAjmXOninFQfI14P2e8+re4z9AJDjPMeYby7uRaKpUDXWiAPnOJQh/Rdu2m35wKjqhLPgo
k65p/sF5NfzZEokFJprp1W0yaVGDmAd3s/DYR+B22jdWqMuGjhXk28PVOlLh8bbDTVvMktaDxGZD
5fvPjHg7qux3tP1fmtt/H3cVWALossGUZl0RJjlacRMepNwIs1TvAd0wF0FW2Oivz2Indy3dfeDK
Au37E7m/6orAt75INJI0HSLb35wpSKZUr4oO2WC3kv5lf3hJatxjO5OyQIpRSX+xnn/E33LN8pdw
E1Jk6CyEMk4x2WUc2kNpaepCbusPBiOsHe5W+0NHL/aDADMDu2x9sGoHx1GTyZorjCgbO4W22U2B
hUbbAXzngw746J/J1RUAl9Y/pf/2Zhb06Ffx78tywt6NJ8MlQkZiJH47m1GEH7JAEvdhU4rIfJrG
jzYbu6BHPY0OK7+/3k2XAXgacse2IMvNZNgpWldvhinDTfhZ9pM43WYIsKFcBCb92Ty2s1ToQU7Z
tLeEjskggUkDm7UeTw+FcQVxm2rwQYFP9bdo3KVz+fFnlCKr6vs1Urge5DeRw+LCD/6XF4aNPf/i
wHClnE1B/IL6qolx9HoogvoOQH6Peb/Me3+SP0GtD/JOXv6xrYbz8BL/SlSKeYGdIBXm4bDkq56r
ZUFtuGKviAppv34MbWtBLTOtMnqWeaTC2hQRexMvmdVTDrSxCGlbiclxZhi0fBjUraKhkgm3e3yE
BZ0MGNobdYd1iVMiPHv1XiHlf/CNC53f1sT9cE8SkyWKMNF/JOd8LGYctGLgT932pVrdkIWVYnij
elpxG4X+cEh1gdF7dFGP9tFiDf9i1hsAQYAB2e29XwZiKjI9mPDo4SQrq9cWKlXc8vVGCD7DQgdR
B2CeDJHr4UiJYfv3jdQSz6dmGlURnrvaOAd1aws6J20sfRYrYZS9kMAJLCi7Y/ulaUbXfJ8No8Qu
P4+Ju/q3HtzTuJG9cHFMWRvVSPnBbdUAX2QOpecR+e6D0BTXtg1Cy4rEcDjs8lmGIrPEsmAOTYfh
gEprbXndQB9UkCITxgmc3msoGHNvOdQ0ZzFWptXsYhDmIFe5Dg+CKzWf/W+J6yB/1I8AMH8tGsOO
KPswaxWc89dDkVVYI6bN3jTwFmDfF8zNGBwrtVOIc3RuN1H8/O8d3fhD81K6SGiKW5poZzS8oCL7
3P1LglZVmFzvwmqh3KbKQliaXbihy1Dfzafh7L2sPVLpUTSK3Lpq5YoHAQlQ1fZGPTzSnfcwm/4c
Dts+Ws+GUTlRvqUO/dJsX/CeqX4EaUL3FCMSxk0Fq/pqzXX6LD2g2Tp3GGkMNkRwCIQYhbq27BxH
AtgZ+PFslkYfHmXYVcA2Za3IsbzP7iomZ+LIOhpLgUkTgW1mQgNRD+wBnHgS8/dOKYm3dD7n4xl7
nXIHdnaSzlWjcS3m8hh17Tb5OjzpCPFvSptVNuO3IqLBsKFlQi5NNoOQsaVoUUEeePASRyP92qvN
wHGLOiwyiLcRoYnUgPa9PWFxKIXdSiRf1M3Qsr9tNcJF9FKrqB4ekMWCCk+rGx46cKnzz830oNpY
/bXdExuwkVWBkXTsD+QwZXsh+ZCmnCEKjpe/lX5Jd3yed4xSNs+gkTi5KXYizFrldJX0Q1pNZRD1
jOi1fof/kZ7qLoicdXb3+c9xVCFr6Kqr39wu7umvPJ1LH2EmCMqnr5LIm1U+r86skrMPBjtRBt8a
qtTZOZ5Hvr2c9td3AN6hCxYkt4+nyXVW/VjA7jBvF8qT2SAzVJzFNnDXKVZVV9joGBhwLbKKmE93
vLbqSbqN85FUc3Ez6pLccmIdFY7x4Juwm+ec1IM8BXeDg6NAwsMC86RAXr3SA08FH2PpqrV5nrD+
23n88bL8hve2XW5NOvi5wEGqXWYBOfbcapRX40JhA1q00ucYp3k38FVjGU64RwC2fqlF41xUWW6n
arIc/EgY6qMxoyTp1j/7CCv2UBg5+jJsu0HY5Xppi/7hF7JgBvfxEiTocqhnJutTVGgn6NlSpK2c
eF665DESLyG0mfPBval0mVKpbsA6bd0bvRzEjimt35bC7yGXkJLr++EFZM1q5NhWpKyF0ddRZOw/
zG1HldATHCWPiAelda0FAR4mVZTkqdLeh5Ma24iSS28RcDgGc5f5rt4T3yK/BrwDiiKYMa3M2DQa
0Ex/0CHb5wlco6ttDI62s0tiNzbcYmGFZUtZb3axHDDdT2gvxb6XWra+JCj5XCXLxOIqtkOn08RB
Q+3QTW1y+vyy+C9m5/LbThzHS2Kfyktmvr0EHx4i1zHeX2zUlosBKiOd+VmSHUolL8VcV1k0D5Mt
vhcGuJTVZ8ltA/F8xNwBpz+M1TGIckymFMpUtba008pDbQ5jR/pReUI0p4yQYAnz0A4v4ZDjmfXm
BM6vo8sN9Sc9Ak4E9vfUhDwYbj5pQ4H/DPWkk//WfsuuJW8gGrReNPFDsY3VqHLraX1JexxpV5cw
A4CvwVUPTr0FQZ5M49HC2AXeLemahtYIZglh9EcrnvOwT7nIuhl8gFLG151jWkCs52iry/sdsIwx
FPWSNdRhGk7stfju5ua8AJKhHkLcvHJPFyMSFdCvCXstVmdjrnqdLHqjVtcLtEoBiRKP4cMGfrx/
0a6JwYvkWxIzEoyge9ULe4jCXl9AlQaYnh9Fec9AGiN77mG/jttvaXWi9IudSyG737r7Rr/xZ6ys
v0Hr0vqhbqAw9L1TYJ6hcQy9xrlIVl4ZOClR+SQIxmA7yZFIcchHWq5+hsriaA2RWh3rjJjqxFqJ
qms3Uo83cBIih8zk9yKq0i5w5PyLdpoZKVG9D/GDrq4evN3uJSXdRu+CQFs+LCuprw7fSo047ehV
X4XzZQRI3W4C4uE/pkConsSY7AF77Kh4ul5diuIDEFWCPSI/M8mpatSly1xB9xyqb4kH6KkOFT0i
v0STZ2TSD6gy24xmwiA1TyAtSwuyEHJMD4eNttP8iCplldaB8GIyL2WQnC+eB/7zO+HJYZQnlkQa
3H7vHhtXejJsTFxvW8mVk1doIfpt8UTFkw17/eeaSxXMjwPfuv1lBdjx82VVSSPGsQmljdi9SyQZ
H5LKXiIbuzfUeuKONPfy3+Z5h/AM30XmQ5HwE/ERSbZU7K0vr5MUZ2WGyvdCtzia/5E0D+71Kwog
DCyZ/G3/EFd/vVkMVTWypGOEMZC9Mxdf+xvuRKEop+k180b96kMUZDMSxRWGT3ztUaAIVIqF67mI
QeAyVivAVkSNnHlZnKsk1HSPQlP+efIeo/iBeGjr9hJQAVR2nwkUR7EosjaxRcPhMfNOD6RD97wf
zA50MzILldL1riIxJGcIGbqVLvOmb6EPzfoQ0ON7pG9H2x/+LGeg7St8+pjU6/hQTRKT/7TaZsrO
5FxzM8q7XiDKwdgZYmHcck99PoDtqONMlsWl4bHr5h44GvXzYe2TpF2pD2imOuMElB73Lilvr7Th
v7HzPeR6bJOP4FMQJZqzUTqmdHZGPiygObirYg4hGxEjZ3vQjcyow3ptM+jJ+EYbz/BWkne6IB8m
u/GYdSg+GasDNIYlWi61ejIr/X/btAgXncZE01caFmUWT5ncfeQ1bGvQQzPXziUDtVbIgLPtuYMY
x6dSmOYsuQV4mmEUC2gQvO1lPbDXFVv1YJ09naOTiWgv7SP11MtAUAoajNmIg1B0oeHMPNYIk901
UStDiIef01mterXSNCgPgZwgagqsNd1n8R8F71P4KrkS/Y5qTt9uAM21HfnMZDrT0Yk2iT1H3W1o
G1y13PS5abPRnkbMfJsWqCsMeMiVCvh2BmdcXayUWtBkK2O1vtp55MpOK5j0QLpBTMgC3ATbmjbB
LWAZDWyFFx8TDcm9Ktxhtvv2IihiOsvo0vmdxS6s9SpyebM+sSrEZ5iIwYBPvQxMxBu988BuQqQe
hqT9+4UDjq0DmjSxA+ZfmsuVjkgppF4qQzKUHDdAm+mUvZ6hlThKFvk2QZEPrXcE0o4Sx+RUFv3k
qKlVCfGcCqvTAKwAzt/Vz6QStyxyd4U3PYMmf3eVDgaSfeogcOAmITGvcmg+xJABr62ivW0e15NP
osb1PPRS0mn0skUFVIcVZvpKUzBiBQWqBd6ZVNLzp/JWTwRsLU88zP+aI6zzMPZGC4V3EC0l1byn
peELxDn14MIwp6Tu0Qi87kR0E9gTg3h+vbUnppkGNgx/soKEc82Vlk6KKqmDCJzr2J9zcRur7oBg
4OCzz8Ld7lsAgIihNg7zsF0c8WC/XDqfbLd/7xAVF1EkaRM4qwhR9jzhTuYGJckKvg4i5VUOiNIs
KJUqFhYK6KTl6OY3ndUHIHhgfMtOwI3Qt6jBUAr50nOsb9iIN7NMeLd68mJwn0emixAPHnuxwKlk
nQzjth7PENZhC+SdBIFS25Ci7rsA0WgVq2JUAoG8O4zajxgB77RDs87+2CkE2uPOtJbJ3DojvBym
XkMdE1/adPsNag2HSFbQTenjzCzBSZy/H4w7klmWCWq4BqhLlrnFtOGEp/NxLpNJb1+DNqZrGiQY
+6esa1Yy7hfOfUVIVVKFMMK2cAcV/hz/vnqoPdtKNPF9/nhaZd2egGcl89kKlcA1Q0qI2TlfyfRk
1TXbOMTSkcZhoaxjQFt71C5QGD8fcxf6TU58abL61HQtfHdjhj79/BbtyQSXE55LfL7Vea/QOGSa
x8oqe7ZkoC0wUJIZ+IlN8vX+5vJHzT/zUmaD5t8UFcHAqBpfSqRnpms+JXIYYbZg4CwipaeVK445
MlhMe1RIj5+I9xROfe27mpg7NT1VtKiyD78IL1VApTZydLAMU1ELoogABtJ847gTza/42uvm4gbF
3dNb9TkECzR5jQM56uQkiU+2OW8GILTIO7fnpx6dCioMyC45xICebePDkhOMpBHyZA5CSW0EIpVa
YONrXx+C0kH/wrg9jeDvDJscSrf/ymOGl8+sSlWEHWMjpzdxAFNZmwoo2QahOOXAIko67fOp/A5O
5ewnPcW+KKES17E+UBYPqw5uARwj/FsMJUriJ7+/851/YTFeQUVdC8QrfxFndRjk//5WWRkTmGVG
SIvnAcF7LlTi5G8FnjahqoQ5TbeHodvC3EWXm6qk8MKeXxPpTBy1tT9kVEDmAgM2vLhSwgCA4uwS
eydXJqAd68eR7Y/GbNjZ6z4YnxL2NAUjWDwH6nFr+wTSP71iHiQNmvgfdHyAjORQh638kORRjq6K
XRE8oGYZmEymOsdhhRNMxvx7R4UrDpo1e5hxnv/5qbxbq2dCQKqwNhth0nfDg5tDCSc16ei0jbBP
nCStPrt9ILLbi5YhzOmPhVTb4pOFWhG1MtVCK27fxUV33105mS3KPC5b/nzs2A447+yt2b8efvJE
Mhz4Cp4whr+yeAt5SAhzg1eu1cI11hq55DK2txDbpQObovEtHkPxLhVs9k3M3v/hcnkAg/7I8iJK
YTayz8SPZvpe82CBiESqLpNYyEIELm0lpdwZEaVg2UeFWy+qXiDIhQ+5nzyYtnTi1X7aNb0OeQeF
b9OKPJBjb4MalyMX8livrXACqyi6eNlmk17brJ8sxYkfnuDjeQa7zduKtm9ijTQBWPsW5YAQxqp9
Uc5rtnqtyBhRsYOeHFHyAtceze/koGdfGqejTILX+Eo3Q7NtVWjBD5RSdcT50SbgOAH9YNj85hvI
7iSQ6YfAsakJFwUcMWGsDW609PdYFrwvMgmx8KuP9QORJPIgslgZeIrrNZ+SdhEcXxCe7ui0V5+L
3kF/CsBSfEGOhLniZaKDeTRahHWdMUhz1PwsJDyJVO0J25P0fZXZRuDOtgi3WytJ8tHpqUPzIoWV
/x8rtykrQ5yHgEAIs0sq6jVGhu5dXc1yHJyeNqBGJbiYfaXc0UuFJqDpgAX0l3olujvPkAxPHnBS
PerbG15+8CuI/r1lpqsJ6eEQXR8k/dQpdrkSgNr/5NOEEMnEKsRL4koRtM6dRA5fB//N53PO75aJ
ZYPeOyuMmk66dN1vYg0BYLjFzQAAAA==
)
多路恒流源电路
集成运放是一个多级放大电路,因而需要多路恒流源电路分别给各级提供合适的静态电流。可以利用一个基准电流去获得多个不同的输出电流,以适应各级的需要。下图所示电路是在比例恒流源基础上得到的多路恒流源电路,IR为基准电流,IC1、IC2和IC3为三路输出电流。由于各管的b-e间电压UBE数值大致相等,因此可得近似关系:
IE0Re0≈IE1Re1≈IE2Re2≈IE3Re3
![](data:;base64,UklGRo4kAABXRUJQVlA4IIIkAADwwgCdASoaAn4BPm0ylUikIqIhIpFLCIANiWlu/CoY3AttCB2s
jU/u7/krzhfDjdPj7yBPFfyD/T/2L9zP612nvMA/WPpC+YD9Yv079qP9dPct6AH6a+rN6rf9K/2n
sJ/xn/I+mL+6Xwy/uz6Qf//1nPzp/au1j+7/kh6D/ifzj9X/I3+5f+//M9QSI78c+z34P+2/tz/e
vdL/P/l76J/D3+w+3j9ZvsI/Hv5l/fP7V+13+I4igAH5n/SP8x/eP3g/0Xpd/2Xoz+b/5n/ffbp9
gP8t/pP+X/vP48fK3/M8Tr8T/y/YC/oP99/9n+h92D+x/9P+k/13qq/QP9N/3/9d8Bv8z/s3/J/w
vbM9IAjV5fJJYh7gMenYymkd57U2n/jfdukGbT/xvu3R7Tahy8IY64aGF8pd+tCjLyF6UFE9CSqH
KIHVfBhrv/jfdukGbT/xvu3SDNjP6ClwPQAA+amiuUhgzaf+N926QZtP/G+7dIM2QrqDuJOU/6f+
N926QZtP/G+7dIM2n/iyqHj0zGe1Np+3OAHwgCi/sJwg2PjcveP/4SXFfuV4RP973I3C1gb5IYrs
UVP2UDvusx3TxxK0T8btNzcs9wL9Q4JvrT8S7QLAq3wsUvrGaH+kAncZbcgFm6baI4zq4KlFnd8b
dOUDvu2uUhqpcQIYKDJcKd0ZwL317MfQoMDz5x2PQYooerFkTQJD8bc4+ku3+RP6Rx3KXTuGZ7uW
OzqkQJUc5//KJ6fy2ZkRSxQPWY8OsIfGvbCSn2ptP+y4jd1dkkCL8bGnp9b/XLgG4ioGTzs5dxLh
QxCjsXlDDNL9o53MB3WsODktaXwO3HY2Z6fKdmy9GuT8UqTHuNB9iDBIebAz06qifqbL+v3lBB8e
oGy+TlWjf/ZRIjvDpJW44mVyN969DMqXzw1q6QrRjpRTQ9yfznGMk+7vXzOf4UgEA7ICeSNmSWJN
cLqSMWiAU2i9nEOCdzQwwB5SY+nWkZVThOZPtQEvGdDgiVPU523FFzQRknzOP9R5cbtFKhR8H2Sb
pVN/1+sRC0Oze5m00nMEeEcyjmZwmXG7XyHT9Zvct/9uhyRsygdyl8JxYQu5KbofbqwOweNYn0Lf
EOBpHB14k+Mu6GR9BLxsdv0MwdfXY8FLgrmcx0sTG/RzxtzAHVf+gWVj9Hkbs0WC5s71plakbiCD
CgOfP9ISEI8tL+Epe0+8HK9v2A8IoQgyqjuRfYOoEnBpPagFq7y8ndjk2r4Kn8IFQYUOq9zRRecq
bfA5qcWsUnHUAg7BYZxJZeeWuUS6xFmt/zYh5CrAzjTpW7q2Gbj7bMPvnttmduEJ8I9g1aKENrgG
IVITdPEfDJiimTW2wsaJKUcLShD0g3ijsQNM7h5QEVNmyI6LtuVjJze5UB5hGCDCer9mYl8Prkkq
66ESiTizqBdcRSNXKFXHgQj47XkGVB0PsP0xIPQwWDvMxBPwEOjTOmlmkygb/SeQeNieYLmjgZaA
6zmRukFideaE9Wwyd2wMee1L7CbOVwWyFwHB3kLl65JmZ+qtM9FNpsMoMkJH2Lws6aNWhOrQpdzw
I8kHvfeemGsIYgJfqBHKH2Pcdd1JHu8lOn5qFZWiTGon0LPC698Mr/EK3jWiMeW4/UWrqljFteht
JnuHg4ngL34gTWuxw+eoXo03o5l5dR7g8PzhSelniNGyMBC/4FjM2+w2S0aj8wp6AUA7ASlySxYx
QNZIAL5DmquMzzUQXqzBhcGLmO67dVvq0EsMNJTtAncgxLdrAilA1/4JLeEDB/hM91JFJiOadtVD
Hl5OsWQAJmhNYo3QTqsMbo7lrvq3kXH6XpKa2V4ivW7eoOVtBrGaTPSXPAWQbKp9O3q0MQfaeEvc
7rergfP0S3v8FO9vaoWk38M1LYaNYElR+lZerKayUDvsA644Cfof7W3gbWF0BFYBcoxM9rs6QTkS
A17vXDcQ1taGRPam0/rXumkPWe1NkkRqLxnntTBUlHZdoswbTXSVRZN8xeS++xAxVsVoP2KGPY/m
LyX36pcTXtQOOFFM46snaRHdex1DqQuZrv/jfds3q4lfTgXKlQb4VvCAK5mu/+QMgAD+/004TY5a
FurqyyLEcbShusCFBtodlq2Lu9bhro9JelHgKYD3t6Lsot6Ts6fIG5fyoCWhW3vl2uxM4M4gn3wL
yk/AumSLRZ3F51KgC1DStlkgvu2fni//o72Znypb+UkFvC3LoRkfSepoCOLuHK+xePwYwnrqK8il
LT6twIVSjcrYhO7XiDiryDtH2PE8cDFuiwGGwoXaPXn6UoTNxhbcB2Gmb+7N2MylPaC11FIkNpY3
aWEOMXyFge04aaTiCjdKfJC4wjVAv7SJ8ozi/aUiYyY3NI/7FEUNqRgMgcw5ZiHQIFFViVynfDGH
h62NNKsE34qYAp+FooeLLrxjVSl7S+Dl2tP6qQmu+HBj8rF53Ris43drf7xBiP3YQuEF3zt0XITC
ferWyE+x4G2BKlJPzh5mr4fope51zHVqO/g+rBhLpxqLmrSbf9KhJ9xt/5xcCGxXBT1B5ow2Qk+t
WBv3s1Y1OKAnEAD+pMqzgBddj/5+6gw+5CUcEoFQFrbgObBLlRotXpD/+LLYr2ilryNihGQDgRLp
ioOFWGWBE3o61GwR3Yms9Hz3YCAoa1BRwl7JMan023OMo32lmBk8Fdf0+HIG+LAAHU6bYG/52Azf
KI0Vr095mDjQ9FE2BNS12TZUgfn2iotQIAAzzueVf5HGugOFLl8II7aa9shc+u3nVEK/ybKj8lCS
k9rYbDHr3nzObrl0UXR7GX8U5q+ryJsFS37y93ea7xzZIhExcdEcm2qQwGdzBeOzNWXBbm2vGYxm
XgbVOtT6/fajfMOXhstGsJ1VEgv6MG7PqUNc4NR6NI/wTqlH8DiFRRzh8C4h/KFo3mWnjdlsHWSI
jsZPkxikJDixfEh40QRDbshDRqttEQfQRzD2vySQzT3/LR2FPQMNgLi5Mf0z7iRfWVkVVUltLGOv
fHAHCYevmQmHsvjXXGigeWWz+fx9Om04h54c5HzMgii50qiaLpN2ba+UAOho4ebyptRiYgds6fCO
+nKX1gnBeHp3OyQP+XmJNS3AYmcxz+iLau/8LMdQALswGd892Me3+nnO4eNsgqQO7sduIC+5YKAK
ciWARm8tv+gwWIqN0FuU3WPlaWU0fDcxLg35Mk1d37ggmrVOU9cN53a6w03IfL53OFvufiq5iIQT
twfi8+zP7UQbjqbHyeYsCePBVVL59GNnpWY/LZQm6yEPTtj9oz4eGTNGVkqSjdEFNICeO07WbWyI
Up3pDTAdH3VIqQRLFKPhQJeWOcySB0uHAjL35C+m44eD7U13J7kAXGTomG343tMWKmR+MfMmG9Kf
8qqlH8wqDqa8qk0M3nJ9AJyFGHw3gtlOHdRwm/+oK3MFfW3MbRAulobnM8aTzYSSoA/J66ON7yc+
oxv17wVGXFJktG4RdFWPoIuhw2+pCuqv3GeBgEdeEVxK149y5rBHHyBW6KGaZhI5VQL2pARVw96e
exSynlVptVEX7/XdrySeGZZCzhyaq6huAglxzCJhkEukTfPut+I/tn82pRTNMZyT7kCmR8KnKiMm
rP9rClijRT0sR2iu2sHskudo31ltwm1s6Cx3lHftR+7ERuBkAZ3cZtdjUsTqyO4ja1HEHKdt7zKP
1+xWuCemxPdOs9iOhwmE4fddWsZefW+agbt31LiXtojdiZNQXBZ1slP/OmPEEJ+FQuQrHik4xNQx
lpGIAZwHS0a1FnxYxhkVHWvtYiLAvUCn03E1hs0/0pvh3kGfJnQVb00eTPczxdTRo7MV5IHnbrRX
qoI3fKCxQXVlAE8DC60l9o37rTkBSFrUOZ8ihoE4HkzQfhb7Mi9Nd5cTHa8VsvK6bDdBeVzPvIEh
Q6hqay7BMGqk6wiP8j6MllOO/EjPb5l4IxlglhvRVs7z9/28AqDHG0Ws1lPwMLXfaWI1pfPnbG3x
fvfPBYnBwof1THQP3Mvt4PV2sF7VG+zHfuJWTZTKuthCPuOF8npxA+uiwQrkiNHll59aeIrNUPeD
ptIcCqrQFCphPyEmA4NE/wsX3LSmmobPhVukJMhQpBmfwjx+Wx5Pk/moDbUiTFvf57CTmZpS6Zcn
DHSCxg0hqLg2mriVSHchwaAnVosH65H5rU8STuHqlVbq5EMw3YWDh/G5SRDvv/19x1toZdUOeqBz
cpg20wGNrWmvcLc0acM44lLac2bP749t1Dqgl7v23tOWmUH5QrpMn+AdMhaA8Cf5h4PK/o8eZSMK
fUC6HfqHUJpq6mDpkoZrqkh0ieXVqr5ML0ZYYiAbEsYA8kyJbF/gUdy4aQry3EbfQbUr3/WqhUEc
mbo70lTXZ2MndxjfZulHkkVqlva/jBM6fxFigBozW5aaNWa+QZObJ/Kh61+LHJVrsZucjnEk3jqs
QjIdOaz3yHBD/+6P3BJ4TO5bcyJiyDIAhffpxWUrlRpRbSOBGK70uIPOlTYOqgczz4gRpNawaUo6
0UGN6+EG60CQBcYOYPNUuqjMfbvJX+bPBKjbBmiX6AlbdXArhDRlfjuVv1j5y0Eha76VGv4nlwCS
TJHfkfB8o+mDOeNkOViNPg9cWOhfep9di/22lrjfissfj670EqMVLUbrCdY1+wYeEnznkn67phQZ
ChszlodtFYB/yrnm3TLCaSpQuthCef7SB3PdVSZuDxbWELsOInWNcEqnt2fKFEa3pa/p7MurQ8Tp
ErwzOhQuokWf2NkBO+nG0JD7m286G6KfB/4HwALT3USBeFLy6cV2v+GwbkMdExL5wD3/xY/bsCOs
7QpGnyqurRWSb/PbiHG/nJF/+ZwOAAJDZ9CUPE0Xft/UbyG60tUdjAhT2eHarsVrDYIhkFvxXr3/
kbB60Wce0A5KH3FsSoUa7E0z661M6DrTrzY+sHLtzymaZxBC8FVTJmsSrbPr8rhOgKRVYOUV6E7J
26R/E+4ZP3Wt/xOA368G0Rk6kkhvecHCngkPzXyFWZJAM+npEJwrZ22f4M4jeXwSzmu6ObSDJIeD
D14o8ZUZXHC9fxgCadp8lCfvOxZ4Yue0OnoVdRxNLO16UTjaduMERhQ7Nb37VsJUHyXXQ5pUxWeH
IgsR7Y7J20RcjfQ4K0GGOtVL8EpNqz+ksGDJbdRHdCuBJLHQ/9e13SX/s8DGR/x7wkSkf/BCMSSt
/19X/3L19AO+pzfMUtKMsTtkPdsWib8v7qrwOmkhJmcRs5tOpFNIQ8H/sUUG2aeIJeEMS1+sUBwQ
xbQfmpkVWcOHdHd+esCgus/4ZbBg64RBl2qIjclw3ptGViiT94ksm+xj5PUs3FPreAHca+yuPv+1
A2dNrz0RzrUquA2znkk7ogjND+hGsiyRfee5XEVBLT5G0Ve8CLDYSNQcjbNSiWi9xqSpIpAm2v1v
Z90VRzJlefNefGPv4dvgE+GCdI7ap8B6Wr0TewyAyt0sYNlUk2FBYxSP/638XYREkSCNRvF15SaR
DG2EN21lJjlCFsSj4oSxRqcP2FpNbFzlIvAb6zwEmkPJ9HbmWffJbr8dNxztL+FJyRlhLzxcVA1v
UPohWSSmzek6+/i92j3zSJH+S3ApdqKFobzrB7OS6AAztEivqW7bQqEU2FuGvWM+OTf2xH3pRfuc
6eTmyerYphn7IkWKtZUtkrVo5qwqsshKiFuN3/HK74OGic72u8lEcY5y+tVNfD/szme4FO1PoOKy
oPXfgdymguA1IGegZTO1BTWN+r62DOZzaPWCyA1CvHC/nI9AoTuL2C13lV6TbDzJMah5EZgjJAeg
U9fXw2ctLqdxlo13fQyDfjyBluAyK+VCCn3IbfTDD5abM69khhJ1D//MgxjjCzJ5VWPSzztKK8tO
ybUPI8Cr4gxdWkuk8LW0LeUAik6+jqTzHJr69sMSQ+d+ykP3bpfBntf2KWHN8LunrHOAGZ9E+Hz2
RbECO5fUAowY4E5ACN72R6YqZvBRyFVlQG1Swe5rGGwIVTmHXLU3UqBqw939FBBn2PUXvluezQjp
nYyi0XqR424xJ8gpb5dh6vOQCgQBHRPOGyZQB8gER9fADi+y5soUa6odAxkMh1UU3OWmTiKxPiux
vLyVdZ1kR5IarNt0s9vpPmfzMmYc8WKUGFYvGG7jVKt/zPblfPqrOjpQqF2BvSA3i/W281aAH+d9
HXYaM/2CCbAMx8wFW3wggOsZimTO/r+NGkaOYRRTtMilmkSvcZSpbL7F4lhX2l2rCkU0CmZaRdVx
tn/J4rBVqtWUH//CcdJBeNI5cqGzDn/010azYdeF/2h+0T9yiIZcRZgP1ew5K+TuefSp3ojAO33U
fQQdRKK92kl9CTmBz2bVenllIlXPOJEZpIawh6S+jz45zwZuThWmD6VOB0U0gNATpjSJAlDExE/z
vp7IJJQnBnMCcRIbpjfu7eR942n2dypAp43nPZKn6gin/yCQLV5Cl4LrpsKfn0wbmrFu5PHyF3jf
3jEaXFq575dEHEKGKqR/y5jgg91s5WGc5js0Rls+GDb7WqWFeKehm74A9GIJTmoEKeKAN/itL+RW
zw+cmzL6CnxWKbUTrOH1cMH5rMHki1PSshhpdsF+QzRwQWGyY0roIeBDAl461VJy8Ii8v/mqtrlL
TXncwB0baUStkv14lvRlq58Tf7jHmuxR7b8r5yBzfrHk9lYfkjAHskjVEXiDQA/mVM6U7O8FyJ7L
k0lQ9MnR8Dv1UpFDT0ElKHW3hDybx0eaC8U+vg/YjFDTPhmGiFAzM3GjTENVWg5pHCcWljygrHYg
9fwSChttu6n5Q3cswwlE2rJf2EBBCP64huqlTk8l4hxZ57xuDr9j5af/6l5G5IAJ6Y0f5HhpzpbA
eKqyP/TVlUIRGWQWk7gIGGkzWdT/vourc7VR88vQt6Yp7h1R9fc3fH7Ji4YelU7NGcQZp/+iOnOw
8S1f2nrM9wZgneKy79X2/hwO6Vhq6Lrp6DQj4XFDaJ4C+0x/3TvbPdOcX4sRU7oLaUC6JzyHzh87
KaGxdEP9+7yj1LZH527AGy0dectc9I7EjIVNLE3FOclsEd8+soiS1o2YqecYzTAMP4ny0FRopJuT
UERm2th/XiCDGAwqsEv68GyZq83D6uyu91+y8a4zVpOopdtlvtGSELAwbusc2JiXqINa096AtlKK
mZULC0Xv7ytZ925eso56/Vwlrkev+EQJ2TKqjRlgHQKY4O30PlPACwbS7yeAhAgiAe87Zbc9Cmo0
/acYH3hUABIdL78+24qq5/srf5Ct9GQsyNiDCqcvhgomLFajfiF1Gf6mqMfjTGtgsqTalSUpJ/e9
hioUpHOSoaPX9EMkSuTJY6z3GkDmH/KGY6n/yOXxAYAsUU8IbUi9fwc5XfQyEZkuGCiToFkT/ggc
/+BBPDKhk+ONHfX+wnHmch4b9ujdAgvwbl66nKp/bbuzEe35IDO+7RY6fWZ4UcYBBkIAcPcxGYpb
Wm7fGq6OP8rsBZj7aw8lpSRJ6FTjYWtpPpQoqJCowNn2n9PE3PmKDkiJf4zKPvBl4dQHmKPShEMV
jy9i6zWNPKKGi+rvCbbQthYvf96vGIBoOVrWEEC1+UUwtsqoVE0PCWfLbJPS0/pstLFKjS4wHr7N
i/AKtp44s5wemoqMoH1K3ZSFdhfc+zX/MYeIZ1gbX6K1AWsXvHw3I5pIPD+47uOhxilt/5JmUX0R
F6va5DCXzaMF/yUOuhqdS3SIvWhionSAShoUGs/DColRUIQQkjMKcFgfZUpym6Cqz+GrH8ndCWG2
E1FdtbDcCnETAtgrHOwvibx12T3z7MrFPNDHsMb+CyWgenMU/+bOYcAxg0jqunw+qgWuYJkCANgk
m+xKB9ShsNTeNvXuzbZynH1LmostqHP0GxQzz21WrYeNvXvQAL2cQwlTXVKhuYrZqlW/4Yewe4UO
EW46qrc1+GKT5ZhSIaNNbqECNkVl3n8zfM5gEtGQfH9TnYHd5E/A5g2cbYO8HXcvc87VHD0w4HZp
UD/LwK/1V/H3s99miT6cX1092z1qOmxb2eARUGeAnSjE4chiQhDWFKSFKjmmom87GJSTIR3TvcCy
r2zJwkAepG7FF6RxsoTrZVv0Kvz+GwD3owXeTpygWd9aB4MQ3frzTUsJX+zujx9EPsrzs+bmruwB
GPHHCLUHMbtAPJhQhKaXh/DiEnE3dFG0kDY2BuNEO/qMDLfKJy1jI2vDMHn2Wy8hDy52CkDyjHvp
IPPMNUfYU+7AIFs7qGvPIiWAuKR8emaFWIJwO3sIcEeSdjkP81r7D/uVFMb9bgKeZJSZ/nWlmB33
U8VR5iyTG2OMt/mpdrldJxLrcRvgwoMPDqYPdiGMYi9faufOzKOeo+68ie4rB7SaSIYLg3WaqkMI
7c1sqtmh3YTPhxmfUhNEUh8HCX83H8uq5Y5ChRWGRRFY/cD9AtlvEFhutPorFFT9Qwlobk8zZDq3
/ha5LSNMvgGNl+Ws7eJklVSqo0g3zpiYcGawjLZOFjhsm92Sw1i//ys/x/wd8sC2OhO3diC7WacI
tWrlahPZOpFBrgK8F+73uwkLyt8lyA7sjIyEWPog7AIvFk5EuR8zGATOtwxqsSovpuSWMEgXqBbL
eILDYMNjHz1q9me586+HyiDcH9sp7ZlzLgVKs8VORBPR7m1L/Y8CrcuUi7X0iX++NqR0ahExnayv
Bajzr/yqOi6lKULE8FXCqStP2sm2BPYf8wfqxxyaalZxqUvjqkTGDtWEj4dCSaEiubmuzpw7V836
YYaM+Jyn977BuGGNjhvM9gFzj/5zD0fcX5My+m49/2ZOCK+UEcQS0D+acaXZ7joaBiwtPskMi/Z+
Q66ldhtIyYzuy2W80blFOiU/E9b+Z7rfjtEkA3z0XoI3v9jzHRPkjFzySbd1zp0y7e/ktLnBWW2S
q1beAqK4ItIEMsghSdohMsLPDFq0PRX5tGuEVmcNmMgORGGZY87SLQwdmhMCi8/iNZ1EIKtRphXt
PfLu5JW6U7tKuRepn+F2y+zRFYtKG5v9LdBNIC2dtg5S/b53baABEpYpgkJ9NNytRMJQ90v3oK5p
I+OWnY3xs3xfVZmgVgsQpQH49CZ5SJ7stwITjFCnx3cxGDQJnZL/wislrOTjqzHBqc0NUuxjs9nE
SxSMgHi8GryvcmzcJyNokciOd0/vG7UauqOB2rX+LFzRXVh8zozOTRrzKwvmNWXqctJup8yQKH26
CaSCsEH5Q6PiDvSVbmtdnpQR3zywaa2ogmIdfW1tIf3ucgD7grEEi+c2LQFaXIDBnmOo5qWyYiut
JOAqDtbQXDCXqHKPB3yURq61LvMnwsRN/dCPhq3VKYJuaV5kU5/pQAmhD1Nc2bQxKjQU1rleCVSr
qWN/WaW7TQPCSZGEV5CeNKwjUoaOVZjdedK8RWDxW3RUG18TfYTcZl5aAOy2m0JXBIjf1HSfpZGv
NkMYE2ollhZsTmFxGhZiQj7LrNQCAMFN/AeR8CPqQaE34JnFCID8ROrD4cvtK/ZDQ63rxx/f5+Tu
7vmC4JBCbnncQ9Ffmx8W/JgI5If9ze6vHK2ableQ5u3rDv66zgLtR95Jcl+g8jHddEuyh0QxISPd
85Rrzl/zONnaPdkIu9Z+vny3BEX2uVXxSA2zz+7Ca1/NrOcvhqyX7R6NA/L10GtJuo1oRkCTOGZ7
jNaSjMmzeZwHD+5qtKr+VPFaUpmQFhX3wC4/xZJpHLOKM6pNNEo/wYdZKQLUtlpGTiOT/mIXQ4CQ
nJkVYNzig6wcQ9sv0f7J32AOGrbd5Y7QJLJKHV45yzcrkBhUhrSm0RgAZ6jW4ZL0sYewQ6qhnmCe
jIf+CQ+HrKDZgKXp3jFpYH2bH7N8jEMcaknE8eXkW/us90ar+Br0P4zVziUcfIYhDHdErGGQVsyi
6CkPG9EJ90mEhphqM83snOiDCaD4+cN2gZNTppHySA+enVXRQ1bYJSCxhWtK6n7G8eDANP/DTOkk
aPo3sfJoC49l2FQ/8Fu6wpnjoWGsbdSLJj2S8YPHtfnjeJUH0gVOuE9ruHHg+6JEgR1OZabdzvu9
n0PeoQZ9u7WWC7t84wk38VXE2Yk7xeR4G3jrReiqEqLNPZZ5Gwfm/VwnZ22oYCu49CV5ghRyatKm
4OtFgPXPyWHJpfxpJr4nWWZ0K6iHImT7Jlm0D6MLd/w8CnViQiS0WORnvw/0GTJs/j6OijItu77e
YGqLCOnXlRDPqKZXTaTMjqscyd0ogsME0eJG3ipR3+9Y/dLBw93o5uNNHyoHXPUCIPDn3qGRTn3x
TrKElOrqPo4YUIYhJh0QsN2PmztYViLHqPgAM2/PiHqd+8is6EcVPrPRSZAMYSYptnRCZaWTEmJl
8bpV/Orf/D9SIvE07RSWOYOweuF7+tbcKV839hujucucue8EpMHZxPpZ0RwEDhnyqZJUK3QyRo2I
GyCG3SW3MowgX7KP+EVTfMK96XpzcaLrjR4qZiYG1toB0Cm8pR+OPbeQZg4fmLpn4/I8GbqMx33/
tg2/VKrY79LspT0ZR7ZOSK4R9OtWb3ftqeh335SIVQwuwhhRGEgNqUWKwBwt5LEiao7o49ZIqTdF
SeYvCFb7JSVkwdWOk+0aIGodv6LGs8w2p2xwqoRdL9zDRiJI4/8OgK5Ha/XWKgZR7bLISbQngaWx
fvpG3h4egOtHUXyiWZggmUzk20LKHNCFM6PYHMzJYR/vuDuAgVld2qyuWP3I1V9Wsn6QKBg9fq/Z
pyfBzfIEu+oKZetH/y12jiBEJg/QFljODxgdDaDMc76ifWCy5w7g1+OzwW1U3rmZfprJ7B85hQjA
C66hn04t3zirWgQGPs26nTsfqQ6UcaGhpDSJF6UHl4K5utIzDh/4MwdzzfMoQUgfGsQHexUvRpnW
7eZjFJ9sQwIM5ucNJBm0TIwFDFL+4+gDRtBKBJIWAa1/agJAXZGn8awSlkDDPeWAsqQzSGQt2bW/
xCp9dLa9IeKneeuqI2/8NUGrqsxXIZ/938P/d6mgUMRytCuhvGeBj2aqCUFb1+EUD+JpDRmg8N+S
u3HvKvzoQmDCPggLlKxSUtmuP12bkOJMDXeyKkG25b3b9FSfatzL6RRdYHj0o/PthorpMfT8GW49
a32ON7WSqtBZaZg7YVTaV39WzbB9sZpBfXobTImDiZWL+B9UK9ktvFUKgylzRss3RDvdF9Hpcybu
5PmQ1wGSPTHoYs3C7P2udBT/ZrtY57QkVyDOsc66FyncFlO0FSJuw2jTnj2pZKQQ+oT8v4zXcD+Y
qjhw7ud/fRZiU5GfRZWdJwBIQq5jWcPCr+O3JeWRs2p27mFZX7bG59PW4bSaxINrs+uC8VpUOidf
kWzz6irv5HfSDLTXkYa1MRvFPSIIdWg7JR1rchMSSpJbxfcSvxwtqytO9x201A93Gern6DuAJG3p
7zyWpxZHgFN91qLLMF7JMA7PrOd4DQQ6W75B1ATCX62MwhOvuiwi11EoxWxRWnwpST04F4Vjx8hE
nEk3PNnrfzrWmyogFsF1IUcg4iuJVmFPUSKBMsgCzxnARavCIOVzepgrbOWp317xw8SWKz0ppSkW
bzJdeM0vgfov7kUyDkqM6/OObm911rPW1KBuN1VazlJrn+pTVNl4lNzxxHoWUbhb7Qor8jR+MG46
VniTSPp+n6xXtv4gsYYDoL/is2uXW+FW8ev3AzK/e6mYHmKhlj9irSiqNX29KskBa+6b29OtL0JJ
WeXe3sckjQ/+G/OPj/W0a2z/a6mFmy0t5VjIM9VfQ3vffIY0lvuGXo4vt4TRvBY67qluCNYGwRHM
iV4a474aP0hMDBNo8A6rBa14QnYY6MkbMKZyRbc8UTMEH+3V9m1H3v2puKzZyAQfWN/ooMH0fmWb
NEM5Pf/KXYZHUjO7/OtQyiX7NfaNXhjGBEUSOn1LyjIEeMxVmI0bcZvwmW/zdHkCrrZALQx3Q5Q6
Cz0ACqmlBRq430O31ZWUnlduzrmfq6TJI5toLQHgTOYzbkoBn//ng489/nNOJSRhvppptDYO/+hQ
Gb3swQ+l3JReZ1vQW9xf+sAXUzL1lBn7E5n/0lIEzWFESQFepWLT04I6bvBCbWV6DKBr0kidBoCs
sPZkCJqsuZnO8NW78QkI4GzC7bkH+/YzxZ7iITN/5kWfKqTkU6VyNpJTM9c7UEj0dLXnky0c+ws1
IfPG8W1y5XIGFkL/xd2qZXc1nH0rra/UiKYUrvTfVRbEMhSg4oNVrHe/m0qPz6zeIjdzxkNTZicw
iBEC8IchE1s06mMCuV1MYFTZfcYq8i4dEiv1CQxK6k6db7Wxtff6heTs7S41KJF/1EiPShBEP0yB
PTyXWHoB1lyEYqHPD/WrhMp8qQiFayiQgbGF47usjkmIqEXAUTrEesUjoPiZKQuD9y7WGGWsqjqG
h2ZbtlT50Oybgl8cOGfgAAAA
)
当IE0确定后,各级只要选择合适的电阻,就可以得到所需的电流。
丨 整理文章为传播相关技术,版权归原作者所有丨
丨如有侵权,请联系删除丨
|