7489|2

11

帖子

0

TA的资源

一粒金砂(中级)

楼主
 

[运算放大器参数解析与LTspice应用仿真] 来吧LTspice|算清放大器电路噪声RMS值的... [复制链接]

开篇的话:

    《运算放大器参数解析与LTspice应用仿真》一书历时半年多完成撰写,目前出版准备工作也有序展开。该书的写作初衷是为模拟电子工程师在放大器设计和使用中,提供有效的指导与帮助,力争使本书成为工程师案头的常备参考书籍。

    该书是笔者在整理放大器参数资料基础上,从所支持过的600余例项目中,精选十余项极具代表性的放大器设计案例,深入分析参数的应用。并且配合50余例LTspice仿真电路,以实际运算放大器的模型实现参数特性验证。该书还能帮助工程师熟练掌握LTspice仿真工具的使用,在日常工作中高效、可靠的保证项目研发的进度,以及实现模拟电子工程师工作技能的提升。

    十分有幸,ADI公司放大器领域专家郭剑先生认可该书的内容和创作理念,并为此书作序。同时,在近期与业内人士交流中得知,许多工程师不仅需要纸质书籍作为工具,还希望获得电子版内容方便灵活阅读。所以,该公众号将定期节选书中放大器参数解析、实用案例、LTspice仿真验证等精彩内容,方便工程师便捷学习、互动交流。

一款单通道的放大器通常只有5个引脚,看似十分简单的器件,但是它作为模拟信号处理的核心器件,必须在应用中详细评估设计需求与放大器参数的匹配度。作为公众号的开篇之作,呈现放大器噪声RMS值的繁琐计算方式,以及使用LTspice仿真轻而易举实现噪声RMS值的有效评估。欢迎大家讨论,分享。

    1.放大器的噪声类型与分析

    放大器内部的噪声由1/f 噪声与宽带噪声组成。二者是不相关的,所以通过均方根计算总噪声。

    (1)闪变噪声又称1/f 噪声。它普遍存在于自然界和人类的生活中,在放大器中主要与半导体晶体结构不完美有关,具有如下特性:

    1)1/f噪声随频率增加而下降

    2)每倍频(或十倍频)的带宽内包含相同功率。

    放大器电压、电流的1/f噪声RMS值,分别为式2-51、2-52。

https://pic1.zhimg.com/80/v2-67242dcf95ad2790d7d66a0683d7ca09_720w.png

    式中,en,In是测量到1/f噪声RMS值,Ke,Ki是比例常数,fmax,fmin是频带的上下限频率点。

    (2)宽带噪声,一个带宽内噪声功率为恒定值的噪声,即噪声密度为常数。宽带噪声、散弹噪声、电阻热噪声可近似认为是白噪声。之所以称为白噪声,因为与白色光有相近之处。在白色光中,所用的颜色都是等量。

    放大器电压、电流的宽带噪声RMS值,分别为式2-53、2-54。

https://pic2.zhimg.com/80/v2-8d803643dd94c30ad33393645ad130a9_720w.png

    其中ewn,Iwn,分为电压噪声密度与电流噪声密度。

    如图2.77,放大器噪声与频率特性,X轴代表频率,单位为Hz,Y轴代表电压噪声密度,或者电流噪声密度,单位通常为nV/√HZ,pA/√HZ。在低频率范围内,以1/f噪声是总噪声主要成分,在高频范围内,以宽带噪声为总噪声的主要成分。将1/f噪声曲线向高频延伸,宽带噪声向低频延伸,在二者的交点1/f噪声与宽带噪声幅度相等,该点频率称为“转角频率”fnc。该点的总噪声为√2倍的宽带噪声。

https://pic1.zhimg.com/80/v2-ad38b4bd120984407a719fdc11b1dacc_720w.png

图2.77放大器噪声频率特性

    fnc的位置与总噪声计算相关,需要精确计算,步骤如下:

    (1)计算最低频率上的1/f噪声的平方,将它减去宽带噪声平方的结果,乘以最低频率,即为该频率点1/f噪声的平方值。

    (2)将最低频率点1/f噪声的平方值除以宽带噪声的平方值,所得结果为fnc。

    【放大器电压噪声计算示例】如下以ADA4077的电压噪声为例,使用1/f噪声密度与宽带噪声密度,计算1Hz~1KHz总噪声的RMS值。

如图2.6,ADA4077在1Hz处电压噪声密度为13nV/√Hz,在1KHz处电压噪声密度为6.9nV/√Hz。1Hz可视为电压1/f噪声的最低频率,1KHz的噪声可视为宽带噪声,计算转角频率。

https://pic3.zhimg.com/80/v2-4569dd2c212250ae5ec93358180cadf5_720w.png

图2.6 ADA4077噪声与隔离度性能

https://pic1.zhimg.com/80/v2-846bd9ad8a804e8492bde88e8d600201_720w.png

    将转角频率、1/f噪声密度、宽带噪声密度代入式2-51、2-53,可以计算1Hz至1KHz的总噪声RMS值为:

https://pic2.zhimg.com/80/v2-bfe6cb6930f8f997ef36667f8b59922b_720w.png

    2.放大器电路的噪声分析

    在放大器工作电路中呈现的总噪声是包括电流噪声、电压噪声、电阻噪声。首先需要根据实际电路分析得到主体噪声因素,然后将主体噪声因素的影响视为总噪声近似评估。

放大器电路噪声分析示例】如图2.78,当信号从A点引入,电路视为反相放大电路,增益为-R2/R1,当信号从B点引入,电路视为同相放大电路,增益为1+R2/R1,而噪声增益都为1+R2/R1。电路折算到输入端的总噪声RMS值en_RTI为式2-55:

https://pic4.zhimg.com/80/v2-aff85ea8a62dce7b70d4be210ea74a55_720w.png

    其中,enR1、enR2、enR3为电阻R1、R2、R3的热噪声,enA为放大器的电压噪声,In+、In-为放大器的同相、反相输入端的电流噪声。在均方根计算中In-、enR1、enR2项的影响可以忽略,折合到输入端的总噪声RMS值近似为式2-56。

https://pic4.zhimg.com/80/v2-2d8b118670431186d15300b069d9672f_720w.png

图2.78放大器电路噪声模型

    如式2-56,通常优先考虑电压噪声密度的影响。电流噪声密度为pA/√Hz通常比较小,只有当R3电阻值大于en/In(按宽带噪声密度计算)时,电流噪声的影响才能体现,否则电流噪声的影响可以忽略。只有电阻R3的阻值接近en/In(按宽带噪声密度计算)时,R3热噪声的影响比较明显。

    如图2.79,ADA4807在25℃环境中,±5V工作电压时,100KHz处的噪声视为宽带噪声。电压宽带噪声为3.1nV/√Hz,电流宽带噪声为0.7pA/√Hz,所以当R3电阻远小于4.4KΩ时,电压噪声为主要成分,R3电阻为4.4KΩ时,热噪声为主要成分,当R3电阻远大于4.4KΩ时,电流噪声为主要成分。数据手册另外提供电压1/f噪声转角频率为29Hz,提供电流1/f噪声转角频率为2KHz。

https://pic4.zhimg.com/80/v2-d5c8f8dabd5966cd950eb6061f2b47dc_720w.png

图2.79 ADA4807 电流噪声与电压噪声

    使用ADA4807实现图2.78放大电路,电阻R1为100Ω,电阻R2为900Ω,分别设置R3的阻值为0Ω、4.4KΩ、440KΩ计算电路的总输入噪声。其中,10Hz为1/f噪声的最低频率点,100KHz的噪声为宽带噪声,评估各种状态下输入端噪声密度,如表2.8。

https://pic1.zhimg.com/80/v2-6adf700547c10c322d32f201f67f1dbd_720w.png

表2.8 源阻抗R3对主要噪声的影响

    依据表2.8三种情况,分别计算电路总噪声,以及使用LTspice进行噪声分析对比如下:

    (1)如图2.80,当源阻抗为0Ω时,ADA4807电压噪声为主体影响因素,折算到输出的噪声为:

https://pic4.zhimg.com/80/v2-34936e14f230b17afe05cd279b29df05_720w.png

图2.80 源阻抗为0Ω 的噪声仿真电路

https://picb.zhimg.com/80/v2-574008eacc0bb37852c1c2fbd35f65df_720w.png

    通过计算电压噪声的转角频率为25Hz与图2.79数据手册提供的29Hz接近,当源阻抗为0Ω时,ADA4807在10Hz至100KHz内,所产生的输出噪声电压RMS值约为9.8037uV。

噪声仿真结果如图2.81,输出噪声电压RMS值为10.27uV,ADA4807电压噪声的影响约为95%。

https://picb.zhimg.com/80/v2-a67822ea0a6a36346d8decee9c56ae48_720w.png

图2.81 源阻抗为0Ω时ADA4807输出噪声仿真结果

    (2)如图2.82,当源阻抗为440KΩ时,电流噪声为主体影响因素,折算到输出的噪声为:

https://pic3.zhimg.com/80/v2-f5c9b61504ce3c50527c0c23abef7d6b_720w.png

图2.82 源阻抗为440KΩ 的噪声仿真电路

https://picb.zhimg.com/80/v2-6165ff81dd8cd7434c908150f4e48c53_720w.png

    计算电流噪声的转角频率为2030Hz与图2.79数据手册提供的2KHz近似,当源阻抗为440KΩ时,ADA4807在10Hz至100KHz内,所产生的输出电压噪声RMS值约为1.025mV。

噪声分析结果如图2.83,输出噪声RMS值为1.0557mV ,ADA4807电流噪声的影响约为91%。

https://pic2.zhimg.com/80/v2-a8f190ceb2369804f01b842571d5d96d_720w.png

图2.83源阻抗为440KΩ时ADA4807输出噪声仿真结果

    (3)如图2.84,当源阻抗为4.4KΩ时,电阻的热噪声为主体噪声,折算到输出的噪声为:

https://picb.zhimg.com/80/v2-342ef3cc9606aca0507f7c9d4c54db67_720w.png

    在10Hz至100KHz内,电阻热噪声所导致的输出噪声电压RMS值为26.53μV。

https://picb.zhimg.com/80/v2-a4f7a420342ee4a0a18641a69a7f4ba7_720w.png

图2.84 源阻抗为4.4KΩ 的噪声仿真电路

噪声仿真结果如图2.85,输出噪声RMS值为31.191μV,电阻热噪声的影响约为85%。

https://pic4.zhimg.com/80/v2-d336a795245fee6fe49870543142ee6e_720w.png

图2.85源阻抗为4.4KΩ时ADA4807输出噪声仿真结果


 

    综上所述,在精密测量电路中应该控制电阻的阻值。单一主体噪声因素评估,适用于低源阻抗、和高源阻抗模式。对于源阻抗接近en/In(按宽带噪声密度计算)时,使用单一主体噪声因素评估,会导致的评估结果偏差增大。

    通过仿真对理论计算的验证,更清晰掌握放大器电压噪声、电流噪声、以及电阻噪声在放大电路中的影响。在放大器电路噪声分析中,往往需要迭代多组配置参数,单纯依靠理论计算,即便排除人为因素导致误差,这样的工作量也不容忽视,所以能够使用LTspice进行仿真无疑是最佳的选择。

此帖出自模拟电子论坛

最新回复

有这本书的电子版吗?一直在找,求给,谢谢啦!  详情 回复 发表于 2023-1-17 15:26
点赞 关注

回复
举报

12

帖子

0

TA的资源

一粒金砂(初级)

沙发
 

好长

此帖出自模拟电子论坛
 
 

回复

1

帖子

0

TA的资源

一粒金砂(初级)

板凳
 
有这本书的电子版吗?一直在找,求给,谢谢啦!
此帖出自模拟电子论坛
 
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/8 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表