1743|0

1140

帖子

0

TA的资源

纯净的硅(初级)

楼主
 

mpu6050六轴传感器msp430驱动程序 [复制链接]

#include <msp430g2553.h>
#include"mpu6050.h"
#include "USCI_A0.h"
#include "IMU.h "
/*
*  ======== BCSplus_graceInit ========
*  Initialize MSP430 Basic Clock System
*/
void BCSplus_graceInit(void)
{
    /* USER CODE START (section: BCSplus_graceInit_prologue) */
    /* User initialization code */
    /* USER CODE END (section: BCSplus_graceInit_prologue) */

    /*
     * Basic Clock System Control 2
     *
     * SELM_0 -- DCOCLK
     * DIVM_0 -- Divide by 1
     * ~SELS -- DCOCLK
     * DIVS_1 -- Divide by 2
     * ~DCOR -- DCO uses internal resistor
     *
     * Note: ~<BIT> indicates that <BIT> has value zero
     */
    BCSCTL2 = SELM_0 | DIVM_0 | DIVS_1;

    if (CALBC1_16MHZ != 0xFF) {
        /* Adjust this accordingly to your VCC rise time */
        __delay_cycles(100000);

        /* Follow recommended flow. First, clear all DCOx and MODx bits. Then
         * apply new RSELx values. Finally, apply new DCOx and MODx bit values.
         */
        DCOCTL = 0x00;
        BCSCTL1 = CALBC1_16MHZ;     /* Set DCO to 16MHz */
        DCOCTL = CALDCO_16MHZ;
    }

    /*
     * Basic Clock System Control 1
     *
     * XT2OFF -- Disable XT2CLK
     * ~XTS -- Low Frequency
     * DIVA_0 -- Divide by 1
     *
     * Note: ~XTS indicates that XTS has value zero
     */
    BCSCTL1 |= XT2OFF | DIVA_0;

    /*
     * Basic Clock System Control 3
     *
     * XT2S_0 -- 0.4 - 1 MHz
     * LFXT1S_0 -- If XTS = 0, XT1 = 32768kHz Crystal ; If XTS = 1, XT1 = 0.4 - 1-MHz crystal or resonator
     * XCAP_1 -- ~6 pF
     */
    BCSCTL3 = XT2S_0 | LFXT1S_0 | XCAP_1;

    /* USER CODE START (section: BCSplus_graceInit_epilogue) */
    /* User code */
    /* USER CODE END (section: BCSplus_graceInit_epilogue) */
}/*
* main.c
*/
int main(void)
{
    WDTCTL = WDTPW | WDTHOLD;        // Stop watchdog timer
    BCSplus_graceInit();        //MCLK = 16M,SMCLK = 8M,ack =32.768k
    WDTCTL = WDTPW | WDTTMSEL | WDTIS0;
    IE1 |= WDTIE;
    USCI_A0_init();             //uart 38400bps  
    P1DIR |= BIT0;              //initialize led control PIN
    _EINT();
    MPU6050_Init();             //initialize mpu6050
   
    while(1)
    {
      /*
      Get_Attitude();
     //MPU6050_Dataanl();
     // ReadMPU6050All();
     //Prepare_Data();             //耗时6.15ms
     //Uart1_Send_AF();             //耗时8.42ms
     P1OUT ^= BIT0;
     Get_Attitude();
     //ReadMPU6050All();
     //MPU6050_Dataanl();         //未使用多字节读取,耗时6ms,使用多字节读取,耗时3.6ms
     //Prepare_Data();
    // Uart1_Send_AF();
     P1OUT ^= BIT0;
     */
    }
   
}

//watchdog interrupt server program per 1ms
#pragma vector=WDT_VECTOR
__interrupt void WDT_ISR_HOOK(void)
{
    /* USER CODE START (section: WDT_ISR_HOOK) */
    /* replace this comment with your code */
    static unsigned int count=0;
    static unsigned char ms2 = 0,ms5 = 0,ms10 = 0;
    count++;
    ms2++;
    ms5++;
    ms10++;
   
    if(ms2 == 2)
    {
     ms2 = 0;
     Prepare_Data();
     //MPU6050_Dataanl();
    }
    if(ms5 >= 4)
    {
      ms5 = 0;
      Get_Attitude();
   
    }
    if(ms10 >= 10)
    {
      ms10 = 0;
      Uart1_Send_AF();
    }
    if(count== 200)
    {
      count=0;
      P1OUT ^= BIT0;
    }

        /* USER CODE END (section: WDT_ISR_HOOK) */
}

/*
* This file contains some mpu6050 operation.
* By IC爬虫 (1394024051@qq.com)
* 2014-4-13 v1.0
*/
#include "mpu6050.h"

unsigned char   mpu6050_buffer[14];     //I2C读取后存放数据

int ACC_OFFSET_X,ACC_OFFSET_Y,ACC_OFFSET_Z;
int GYRO_OFFSET_X,GYRO_OFFSET_Y,GYRO_OFFSET_Z;

unsigned char        GYRO_OFFSET_OK = 1;
unsigned char        ACC_OFFSET_OK = 1;

int MPU6050_ACC_LAST_X,MPU6050_ACC_LAST_Y,MPU6050_ACC_LAST_Z;    //final accelerate speed
int MPU6050_GYRO_LAST_X,MPU6050_GYRO_LAST_Y,MPU6050_GYRO_LAST_Z; //final  gyro  speed

/**********************************************************/
//函数名称:void MPU6050_Dataanl
//入口参数:无
//出口参数:无
//函数功能:MPU6050数据读取并处理
/**********************************************************/
void MPU6050_Dataanl(void)
{
#ifndef READALL
  MPU6050_ACC_LAST_X = GetAccelX() - ACC_OFFSET_X;
  MPU6050_ACC_LAST_Y = GetAccelY() - ACC_OFFSET_Y;
  MPU6050_ACC_LAST_Z = GetAccelZ() - ACC_OFFSET_Z;
  
  MPU6050_GYRO_LAST_X = GetAnguX() - GYRO_OFFSET_X;
  MPU6050_GYRO_LAST_Y = GetAnguY() - GYRO_OFFSET_Y;
  MPU6050_GYRO_LAST_Z = GetAnguZ() - GYRO_OFFSET_Z;
  //------------------------------------------------------------------//
  //补偿偏移
  if(!GYRO_OFFSET_OK)
  {
    static long int tempgx=0,tempgy=0,tempgz=0;
    static unsigned char cnt_g=0;

    if(cnt_g==0)
    {
      GYRO_OFFSET_X=0;
      GYRO_OFFSET_Y=0;
      GYRO_OFFSET_Z=0;
      tempgx = 0;
      tempgy = 0;
      tempgz = 0;
      cnt_g = 1;
    }
    tempgx+= MPU6050_GYRO_LAST_X;
    tempgy+= MPU6050_GYRO_LAST_Y;
    tempgz+= MPU6050_GYRO_LAST_Z;
    if(cnt_g==200)
    {
      GYRO_OFFSET_X=tempgx/cnt_g;
      GYRO_OFFSET_Y=tempgy/cnt_g;
      GYRO_OFFSET_Z=tempgz/cnt_g;
      cnt_g = 0;
      GYRO_OFFSET_OK = 1;
      
    }
    cnt_g++;
  }
  if(!ACC_OFFSET_OK)
  {
    static long int tempax=0,tempay=0,tempaz=0;
    static unsigned char cnt_a=0;
   
    if(cnt_a==0)
    {
      ACC_OFFSET_X = 0;
      ACC_OFFSET_Y = 0;
      ACC_OFFSET_Z = 0;
      tempax = 0;
      tempay = 0;
      tempaz = 0;
      cnt_a = 1;
      
    }
    tempax += MPU6050_ACC_LAST_X;//累加
    tempay += MPU6050_ACC_LAST_Y;
    tempaz += MPU6050_ACC_LAST_Z;
    if(cnt_a==200)
    {
      ACC_OFFSET_X = tempax/cnt_a;
      ACC_OFFSET_Y = tempay/cnt_a;
      ACC_OFFSET_Z = tempaz/cnt_a;
      cnt_a = 0;
      ACC_OFFSET_OK = 1;
      
    }
    cnt_a++;
  }
  //--------------------------------------------//
#else
struct MPU6050Struct *MPU6050WORK;
  MPU6050WORK = ReadMPU6050All();
  MPU6050_ACC_LAST_X = (MPU6050WORK ->MPU6050_ACC_X) - ACC_OFFSET_X;
  MPU6050_ACC_LAST_Y = (MPU6050WORK ->MPU6050_ACC_Y) - ACC_OFFSET_Y;
  MPU6050_ACC_LAST_Z = (MPU6050WORK ->MPU6050_ACC_Z) - ACC_OFFSET_Z;
  
  MPU6050_GYRO_LAST_X = (MPU6050WORK ->MPU6050_GYRO_X) - GYRO_OFFSET_X;
  MPU6050_GYRO_LAST_Y = (MPU6050WORK ->MPU6050_GYRO_Y) - GYRO_OFFSET_Y;
  MPU6050_GYRO_LAST_Z = (MPU6050WORK ->MPU6050_GYRO_Z) - GYRO_OFFSET_Z;

  if(!GYRO_OFFSET_OK)
  {
    static long int tempgx=0,tempgy=0,tempgz=0;
    static unsigned char cnt_g=0;

    if(cnt_g==0)
    {
      GYRO_OFFSET_X=0;
      GYRO_OFFSET_Y=0;
      GYRO_OFFSET_Z=0;
      tempgx = 0;
      tempgy = 0;
      tempgz = 0;
      cnt_g = 1;
    }
    tempgx+= MPU6050_GYRO_LAST_X;
    tempgy+= MPU6050_GYRO_LAST_Y;
    tempgz+= MPU6050_GYRO_LAST_Z;
    if(cnt_g==200)
    {
      GYRO_OFFSET_X=tempgx/cnt_g;
      GYRO_OFFSET_Y=tempgy/cnt_g;
      GYRO_OFFSET_Z=tempgz/cnt_g;
      cnt_g = 0;
      GYRO_OFFSET_OK = 1;
      
    }
    cnt_g++;
  }
  if(!ACC_OFFSET_OK)
  {
    static long int tempax=0,tempay=0,tempaz=0;
    static unsigned char cnt_a=0;
   
    if(cnt_a==0)
    {
      ACC_OFFSET_X = 0;
      ACC_OFFSET_Y = 0;
      ACC_OFFSET_Z = 0;
      tempax = 0;
      tempay = 0;
      tempaz = 0;
      cnt_a = 1;
      
    }
    tempax += MPU6050_ACC_LAST_X;//累加
    tempay += MPU6050_ACC_LAST_Y;
    tempaz += MPU6050_ACC_LAST_Z;
    if(cnt_a==200)
    {
      ACC_OFFSET_X = tempax/cnt_a;
      ACC_OFFSET_Y = tempay/cnt_a;
      ACC_OFFSET_Z = tempaz/cnt_a;
      cnt_a = 0;
      ACC_OFFSET_OK = 1;
      
    }
    cnt_a++;
  }
#endif
  
}

/**********************************************************/
//函数名称:void MPU6050Init
//入口参数:无
//出口参数:无
//函数功能:MPU6050初始化
/**********************************************************/
void MPU6050_Init()
{
#ifdef IMITATEIIC
  InitImitateIICPort();
#else
  I2C_Init(SlaveAddr);
#endif
  I2C_Write(PWR_MGMT_1,0x00); //resume from sleep.
  I2C_Write(SMPLRT_DIV, 0x07);
  I2C_Write(CONFIG, 0x06);
  I2C_Write(GYRO_CONFIG, 0x18);
  I2C_Write(ACCEL_CONFIG, 0x01);
}
/**********************************************************/
//函数名称:int Get16Bit
//入口参数:address:读取数据的地址
//出口参数:无
//函数功能:获取MPU6050相应地址上的数据
/**********************************************************/
int Get16Bit (unsigned char  address)
{
#ifndef MULTIREAD
  unsigned char  ho,lo;
  int temp ;
  ho = I2C_Read(address);
  lo = I2C_Read(address+1);
  temp=ho;
  temp<<=8;
  temp+=lo;
  return temp ;
#else
  return( Double_Read_ADXL345(address));
#endif
}
/**********************************************************/
//函数名称:
//入口参数:无
//出口参数:无
//函数功能:获取MPU6050相应轴上的加速度数据
/**********************************************************/
// X/Y/Z-Axis Acceleration
int GetAccelX ()
{
  return Get16Bit(ACCEL_XOUT_H);
}

int GetAccelY ()
{
  return Get16Bit(ACCEL_YOUT_H);
}

int GetAccelZ ()
{
  return Get16Bit(ACCEL_ZOUT_H);
}
/**********************************************************/
//函数名称:
//入口参数:无
//出口参数:无
//函数功能:获取MPU6050相应轴上的角速度数据
/**********************************************************/
// X/Y/Z-Axis Angular velocity
int GetAnguX ()
{
  return Get16Bit(GYRO_XOUT_H);
}

int GetAnguY ()
{
  return Get16Bit(GYRO_YOUT_H);
}

int GetAnguZ ()
{
  return Get16Bit(GYRO_ZOUT_H);
}

#include"msp430iic.h"  

struct MPU6050Struct    MPU6050Data;
void InitImitateIICPort(void)
{
  SET_SDA_OUT;          //set  SDA PIN is out mode
  SDA_HIGH;             // set SDA PIN out is high
  SCL_HIGH;             //set SCL PIN is input mode ,pull up register to SCL PIN high
}

/**************************************
起始信号
**************************************/
void ADXL345_Start(void)
{
    SET_SDA_OUT;
    SDA_HIGH;                    //拉高数据线
    SCL_HIGH;                    //拉高时钟线
    Delay5us();                 //延时
    SDA_LOW;                    //产生下降沿
    Delay5us();                 //延时
    SCL_LOW;                    //拉低时钟线
}

/**************************************
停止信号
**************************************/
void ADXL345_Stop(void)
{
    SET_SDA_OUT;
    SDA_LOW;                    //拉低数据线
    SCL_HIGH;                    //拉高时钟线
    Delay5us();                 //延时
    SDA_HIGH;                    //产生上升沿
    Delay5us();                 //延时
}

/**************************************
发送应答信号
入口参数:ack (0:ACK 1:NAK)
**************************************/
void ADXL345_SendACK(unsigned char ack)
{
    SET_SDA_OUT;
    if(ack)
      SDA_HIGH;                //写NACK应答信号
    else
      SDA_LOW;                 //写ACK应答信号
    SCL_HIGH;                    //拉高时钟线
    Delay5us();                 //延时
    SCL_LOW;                    //拉低时钟线
    Delay5us();                 //延时
}

/**************************************
接收应答信号
**************************************/
unsigned char ADXL345_RecvACK(void)
{
    unsigned char ack;
    //------------------//
    //一下两句切不可调换顺序,否则会导致时序错误
    SET_SDA_IN;
    SCL_HIGH;                    //拉高时钟线  
    //-----------------//
    Delay5us();                 //延时
    ack = SDA_IN;                   //读应答信号
    SCL_LOW;                    //拉低时钟线
    Delay5us();                 //延时
    return ack;
}

/**************************************
向IIC总线发送一个字节数据
**************************************/
void ADXL345_Senduchar(unsigned char dat)
{
    unsigned char i,m;
    SET_SDA_OUT;
    for (i=8; i!=0; i--)         //8位计数器
    {
        m=dat & 0x80;           //移出数据的最高位
        if(m == 0x80)
            SDA_HIGH;
        else
            SDA_LOW;
        SCL_HIGH;                //拉高时钟线
        Delay5us();             //延时
        SCL_LOW;                //拉低时钟线
        dat=dat<<1;
        Delay5us();             //延时
    }
    ADXL345_RecvACK();
}

/**************************************
从IIC总线接收一个字节数据
**************************************/
unsigned char  ADXL345_Recvuchar(void)
{
    unsigned char  i;
    unsigned char dat = 0;
    unsigned char m;
    SDA_HIGH;                    //使能内部上拉,准备读取数据,
    SET_SDA_IN;
    for (i=8; i!=0; i--)         //8位计数器
    {
        dat <<= 1;
        SCL_HIGH;                //拉高时钟线
        SET_SDA_IN;
        m = SDA_IN;
        if(m == I2C_SDA)
            dat = dat|0x01;
        Delay5us();             //延时
        SCL_LOW;                //拉低时钟线
        Delay5us();             //延时
    }
    return dat;
}

//******单字节写入*******************************************

void Single_Write_ADXL345(unsigned char REG_Address,unsigned char REG_data)
{
    ADXL345_Start();                  //起始信号
    ADXL345_Senduchar(SlaveAddress);   //发送设备地址+写信号
    ADXL345_Senduchar(REG_Address);    //内部寄存器地址,请参考中文pdf22页
    ADXL345_Senduchar(REG_data);       //内部寄存器数据,请参考中文pdf22页
    ADXL345_Stop();                   //发送停止信号
}

//********单字节读取*****************************************
unsigned char  Single_Read_ADXL345(unsigned char  REG_Address)
{  unsigned char REG_data=0;
    ADXL345_Start();                          //起始信号
    ADXL345_Senduchar(SlaveAddress);           //发送设备地址+写信号
    ADXL345_Senduchar(REG_Address);                   //发送存储单元地址,从0开始
    ADXL345_Start();                          //起始信号
    ADXL345_Senduchar(SlaveAddress+1);         //发送设备地址+读信号
    REG_data=ADXL345_Recvuchar();              //读出寄存器数据
    ADXL345_SendACK(1);                     //NACK
    ADXL345_Stop();                           //停止信号
    return REG_data;
}
//********多字节读取*****************************************
int  Double_Read_ADXL345(unsigned char  REG_Address)
{
    unsigned char ValueL=0;
    int Value=0;
    ADXL345_Start();                            //起始信号
    ADXL345_Senduchar(SlaveAddress);            //发送设备地址+写信号
    ADXL345_Senduchar(REG_Address);             //发送存储单元地址,从0开始
    ADXL345_Start();                            //起始信号
    ADXL345_Senduchar(SlaveAddress+1);          //发送设备地址+读信号
   
    Value=ADXL345_Recvuchar();                  //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    ValueL=ADXL345_Recvuchar();                 //读出寄存器数据
    ADXL345_SendACK(1);                         //NACK
   
    ADXL345_Stop();                             //停止信号
    Value=(Value<<8)+ValueL;
    return Value;
}

struct MPU6050Struct *ReadMPU6050All()
{
  unsigned char TempAcc1=0,TempAcc2=0,TempAcc3=0,TempAcc4=0,TempAcc5=0,TempAcc6=0;
  unsigned char TempGyro1=0,TempGyro2=0,TempGyro3=0,TempGyro4=0,TempGyro5=0,TempGyro6=0;

    ADXL345_Start();                            //起始信号
    ADXL345_Senduchar(SlaveAddress);            //发送设备地址+写信号
    ADXL345_Senduchar(0x3B);                    //发送存储单元地址,从0x3b开始
    ADXL345_Start();                            //起始信号
    ADXL345_Senduchar(SlaveAddress+1);          //发送设备地址+读信号
   
    TempAcc2=ADXL345_Recvuchar();                  //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempAcc1=ADXL345_Recvuchar();                 //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempAcc4=ADXL345_Recvuchar();                  //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempAcc3=ADXL345_Recvuchar();                 //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempAcc6=ADXL345_Recvuchar();                  //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempAcc5=ADXL345_Recvuchar();                 //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    ADXL345_Recvuchar();                         //丢弃不连续地址的数据
    ADXL345_SendACK(0);                         //ACK
   
    ADXL345_Recvuchar();                         //丢弃不连续地址的数据
    ADXL345_SendACK(0);
   
    TempGyro2=ADXL345_Recvuchar();                  //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempGyro1=ADXL345_Recvuchar();                 //读出寄存器数据
    ADXL345_SendACK(0);
   
    TempGyro4=ADXL345_Recvuchar();                  //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempGyro3=ADXL345_Recvuchar();                 //读出寄存器数据
    ADXL345_SendACK(0);
   
    TempGyro6=ADXL345_Recvuchar();                  //读出寄存器数据
    ADXL345_SendACK(0);                         //ACK
   
    TempGyro5=ADXL345_Recvuchar();                 //读出寄存器数据
    ADXL345_SendACK(1);                         //NACK
   
    ADXL345_Stop();

    MPU6050Data.MPU6050_ACC_X=(TempAcc2<<8) + TempAcc1;
    MPU6050Data.MPU6050_ACC_Y=(TempAcc4<<8) + TempAcc3;
    MPU6050Data.MPU6050_ACC_Z=(TempAcc6<<8) + TempAcc5;
   
    MPU6050Data.MPU6050_GYRO_X=(TempGyro2<<8) + TempGyro1;
    MPU6050Data.MPU6050_GYRO_Y=(TempGyro4<<8) + TempGyro3;
    MPU6050Data.MPU6050_GYRO_Z=(TempGyro6<<8) + TempGyro5;
    return (&MPU6050Data);
}


/*
* This file contains some uSCI_A0 operation.
* By IC爬虫 (1394024051@qq.com)
* 2014-4-28 v1.0
*/
//#include "msp430g2553.h"
#include "USCI_A0.h"
//#include "stdio.h"
#include "mpu6050.h"
#include "IMU.h"

#define uchar unsigned char
#define uint unsigned int

//将“int”类型的数据分成两个单字节的数据
#define BYTE0(dwTemp)       (*(char *)(&dwTemp))
#define BYTE1(dwTemp)       (*((char *)(&dwTemp) + 1))
#define BYTE2(dwTemp)       (*((char *)(&dwTemp) + 2))
#define BYTE3(dwTemp)       (*((char *)(&dwTemp) + 3))

/*********************************************************
*名称:USCI_A0_init
*功能:串口初始化
*入口参数:无
*出口参数:无
*说明:设置为P1.1和P1.2为串口通信端口
**********************************************************/
void USCI_A0_init(void)
{
  P1SEL = BIT1 + BIT2 ;   // P1.1 = RXD, P1.2=TXD
  P1SEL2 = BIT1 + BIT2;                     
  UCA0CTL1 |= UCSSEL_2;   // SMCLK
  /*
  UCA0BR0 = 0x45;         // 8MHz 115200
  UCA0BR1 = 0;            // 8MHz 115200
  UCA0MCTL = 0x4a;        // 8MHz 115200  */   
  /*
  UCA0BR0 = 0x68;
  UCA0BR1 = 0;
  UCA0MCTL = 0x40;
  */
  UCA0MCTL = UCBRF_0 | UCBRS_4;
   
    /* Baud rate control register 0 */
    UCA0BR0 = 69;
  UCA0CTL1 &= ~UCSWRST;          // **Initialize USCI state machine**
  
  //IE2 |= UCA0RXIE + UCA0TXIE;  // Enable USCI_A0 TX/RX interrupt
  //IE2 |= UCA0RXIE;             // Enable USCI_A0 RX interrupt
  //__bis_SR_register(GIE);      // Enter LPM3 w/ interrupts enabled
}


/*********************************************************
*名称:UartTX_Send_String
*功能:串口发送字符串函数
*入口参数:*data:数据指针        len :数据长度
*出口参数:无
*说明:
**********************************************************/
void UartTX_Send_String(unsigned char *Data,int len)
{
  int j;
  for(j=0;j<len;j++)
  {
    UartTX_Send_char(*Data++);
  }
}

/*********************************************************
*名称:UartTX_Send_char
*功能:串口发送字符函数
*入口参数:c
*出口参数:无
*说明:
**********************************************************/
unsigned char UartTX_Send_char(unsigned char c)
{
    UCA0TXBUF=c;   
    while(!(IFG2&UCA0TXIFG));
    IFG2&=~UCA0TXIFG;
    return c;
}
/*********************************************************
*名称:int putchar
*功能:串口发送字符函数
*入口参数:ch
*出口参数:无
*说明:
**********************************************************/
int putchar(int ch)
{
  UCA0TXBUF=ch;
  while(!(IFG2&UCA0TXIFG));
   //UCA0TXBUF=ch;
  IFG2&=~UCA0TXIFG;
   return ch;
}


void sendChar(unsigned char c)
{
   while(!(IFG2&UCA0TXIFG));
   UCA0TXBUF=c;
}

void sendStr(unsigned char *s)
{
  while(*s!='\0')
  {
    sendChar(*s);
    s++;
  }
}

/*********************************************************
*名称:void Uart1_Send_AF
*功能:串口发送姿态数据
*入口参数:无
*出口参数:无
*说明:每一次执行这个函数就算是一帧数据,帧头为0X88,功能字
*      为0XAF
**********************************************************/
void Uart1_Send_AF(void)
{
  unsigned char sum = 0;//累加串口发送的数据的值,做校验用
  unsigned int _temp;   
  sum += UartTX_Send_char(0x88);  //帧头
  sum += UartTX_Send_char(0xAF);  //功能字
  
  sum += UartTX_Send_char(0x1c);
  sum += UartTX_Send_char( BYTE1(MPU6050_ACC_LAST_X) ); //发送加速度X轴数据的高8位
  sum += UartTX_Send_char( BYTE0(MPU6050_ACC_LAST_X) ); //发送加速度X轴数据的低8位
  
  sum += UartTX_Send_char( BYTE1(MPU6050_ACC_LAST_Y) ); //发送加速度Y轴数据的高8位
  sum += UartTX_Send_char( BYTE0(MPU6050_ACC_LAST_Y) ); //发送加速度Y轴数据的低8位
  
  sum += UartTX_Send_char( BYTE1(MPU6050_ACC_LAST_Z) ); //发送加速度Z轴数据的高8位
  sum += UartTX_Send_char( BYTE0(MPU6050_ACC_LAST_Z) ); //发送加速度Z轴数据的低8位
  
  sum += UartTX_Send_char( BYTE1(MPU6050_GYRO_LAST_X) ); //发送陀螺仪X轴数据的高8位
  sum += UartTX_Send_char( BYTE0(MPU6050_GYRO_LAST_X) ); //发送陀螺仪X轴数据的低8位
  
  sum += UartTX_Send_char( BYTE1(MPU6050_GYRO_LAST_Y) ); //发送陀螺仪Y轴数据的高8位
  sum += UartTX_Send_char( BYTE0(MPU6050_GYRO_LAST_Y) ); //发送陀螺仪Y轴数据的低8位
  
  sum += UartTX_Send_char( BYTE1(MPU6050_GYRO_LAST_Z) ); //发送陀螺仪Z轴数据的高8位
  sum += UartTX_Send_char( BYTE0(MPU6050_GYRO_LAST_Z) ); //发送陀螺仪Z轴数据的低8位
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
        
  _temp = (long int)(Q_ANGLE_X*100);
  sum += UartTX_Send_char( BYTE1(_temp) );
  sum += UartTX_Send_char( BYTE0(_temp) );
  _temp = (long int)(Q_ANGLE_Y*100);
  sum += UartTX_Send_char( BYTE1(_temp) );
  sum += UartTX_Send_char( BYTE0(_temp) );
        
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  sum += UartTX_Send_char(0);
  
  UartTX_Send_char(sum); //串口发送累加值用于校验
}


/*
* This file contains some IMU operation.
* By IC爬虫 (1394024051@qq.com)
* 2014-4-29 v1.0
*/
#include "IMU.h"

#define RtA           57.324841  //弧度到角度
#define AtR              0.0174533  //度到角度
#define Acc_G           0.0011963  //加速度变成G
#define Gyro_G           0.0152672  //角速度变成度
#define Gyro_Gr          0.0002663                                
#define FILTER_NUM 20

int   ACC_AVG_X,ACC_AVG_Y,ACC_AVG_Z;      //平均值滤波后的ACC
float GYRO_I_X,GYRO_I_Y,GYRO_I_Z;         //陀螺仪积分
float EXP_ANGLE_X,EXP_ANGLE_Y,EXP_ANGLE_Z;//期望角度
float DIF_ANGLE_X,DIF_ANGLE_Y,DIF_ANGLE_Z;//期望角度和实际角度的差
float Q_ANGLE_X,Q_ANGLE_Y,Q_ANGLE_Z;      //四元数计算出的角度

int ACC_X_BUF[FILTER_NUM],ACC_Y_BUF[FILTER_NUM],ACC_Z_BUF[FILTER_NUM];        //加速度滑动窗口滤波数组

/**********************************************************/
//函数名称:Prepare_Data
//入口参数:无
//出口参数:无
//函数功能:读取MPU6050数据进行平滑滤波,为后续计算准备数据
/**********************************************************/
void Prepare_Data(void)
{
  static unsigned char filter_cnt=0;
  long int temp1=0,temp2=0,temp3=0;
  unsigned char i;
        
  MPU6050_Dataanl();//完成传感器数据的读取和计算,并且对数据简单处理
        
  ACC_X_BUF[filter_cnt] = MPU6050_ACC_LAST_X;//更新滑动窗口数组
  ACC_Y_BUF[filter_cnt] = MPU6050_ACC_LAST_Y;
  ACC_Z_BUF[filter_cnt] = MPU6050_ACC_LAST_Z;
  
  for(i=0;i<FILTER_NUM;i++)
  {
    temp1 += ACC_X_BUF[i];
    temp2 += ACC_Y_BUF[i];
    temp3 += ACC_Z_BUF[i];
  }
  
  ACC_AVG_X = temp1 / FILTER_NUM;
  ACC_AVG_Y = temp2 / FILTER_NUM;
  ACC_AVG_Z = temp3 / FILTER_NUM;
  
  filter_cnt++;
  
  if(filter_cnt==FILTER_NUM)  filter_cnt=0;
        
  GYRO_I_X += MPU6050_GYRO_LAST_X*Gyro_G*0.02;//0.0001是时间间隔,两次prepare函数的执行周期
  GYRO_I_Y += MPU6050_GYRO_LAST_Y*Gyro_G*0.02;//示波器测量的得到的时间是20ms.
  GYRO_I_Z += MPU6050_GYRO_LAST_Z*Gyro_G*0.02;
}

void Get_Attitude(void)
{
  IMUupdate( MPU6050_GYRO_LAST_X*Gyro_Gr,
            MPU6050_GYRO_LAST_Y*Gyro_Gr,
            MPU6050_GYRO_LAST_Z*Gyro_Gr,
            ACC_AVG_X,ACC_AVG_Y,ACC_AVG_Z);        //*0.0174转成弧度
}
////////////////////////////////////////////////////////////////////////////////
#define Kp 10.0f        // proportional gain governs rate of convergence to accelerometer/magnetometer
#define Ki 0.008f       // integral gain governs rate of convergence of gyroscope biases
#define halfT 0.004f    // half the sample period采样周期的一半

float q0 = 1, q1 = 0, q2 = 0, q3 = 0;    // quaternion elements representing the estimated orientation
float exInt = 0, eyInt = 0, ezInt = 0;    // scaled integral error
/**********************************************************/
//函数名称:IMUupdate
//入口参数:gx:浮点型的陀螺仪x轴数据
//          gy:浮点型的陀螺仪y轴数据
//          gz:浮点型的陀螺仪z轴数据
//          ax:浮点型的加速度x轴数据
//          ay:浮点型的加速度y轴数据
//          az:浮点型的加速度z轴数据
//出口参数:无
//函数功能:通过陀螺仪和加速度传感器的数据用四元数计算姿态
/**********************************************************/
void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az)
{
  float norm;
//  float hx, hy, hz, bx, bz;
  float vx, vy, vz;// wx, wy, wz;
  float ex, ey, ez;

  //先把这些需要用到的值弄好
  float q0q0 = q0*q0;
  float q0q1 = q0*q1;
  float q0q2 = q0*q2;
//  float q0q3 = q0*q3;
  float q1q1 = q1*q1;
//  float q1q2 = q1*q2;
  float q1q3 = q1*q3;
  float q2q2 = q2*q2;
  float q2q3 = q2*q3;
  float q3q3 = q3*q3;
        
  if(ax*ay*az==0) return;
               
  norm = sqrt(ax*ax + ay*ay + az*az);//acc数据归一化
  ax = ax /norm;
  ay = ay / norm;
  az = az / norm;

  // estimated direction of gravity and flux (v and w)   估计重力方向和流量/变迁
  vx = 2*(q1q3 - q0q2);        //四元数中xyz的表示
  vy = 2*(q0q1 + q2q3);
  vz = q0q0 - q1q1 - q2q2 + q3q3 ;

  // error is sum of cross product between reference direction of fields and direction measured by sensors
  ex = (ay*vz - az*vy) ;   //向量外积在相减得到差分就是误差
  ey = (az*vx - ax*vz) ;
  ez = (ax*vy - ay*vx) ;

  exInt = exInt + ex * Ki; //对误差进行积分
  eyInt = eyInt + ey * Ki;
  ezInt = ezInt + ez * Ki;

  // adjusted gyroscope measurements
  gx = gx + Kp*ex + exInt; //将误差PI后补偿到陀螺仪,即补偿零点漂移
  gy = gy + Kp*ey + eyInt;
  gz = gz + Kp*ez + ezInt; //这里的gz由于没有观测者进行矫正会产生漂移,变现出来的就是积分自增或者自减

  // integrate quaternion rate and normalise //四元数的微分方程
  q0 = q0 + (-q1*gx - q2*gy - q3*gz)*halfT;
  q1 = q1 + (q0*gx + q2*gz - q3*gy)*halfT;
  q2 = q2 + (q0*gy - q1*gz + q3*gx)*halfT;
  q3 = q3 + (q0*gz + q1*gy - q2*gx)*halfT;

  // normalise quaternion
  norm = sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);
  q0 = q0 / norm;
  q1 = q1 / norm;
  q2 = q2 / norm;
  q3 = q3 / norm;

  //Q_ANGLE.Yaw = atan2(2 * q1 * q2 + 2 * q0 * q3, -2 * q2*q2 - 2 * q3* q3 + 1)* 57.3; // yaw
  Q_ANGLE_Y  = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; // pitch
  Q_ANGLE_X = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; // roll
}


/*
* This file contains some I2C operation.
* By IC爬虫 (1394024051@qq.com)
* 2014-4-13 v1.0
*/
#include "HardWareIIC.h"

uchar I2CSendBuffer[2],I2CRecvBuffer; //I2C发送缓存和接收缓存

int I2CSendPtr=0;

/**********************************************************/
//函数名称:void I2C_Init
//入口参数:SlaveAddr:从机的设备地址
//出口参数:无
//函数功能:I2C初始化,P1.6->SCL ,P1.7->SDA
/**********************************************************/
void I2C_Init (unsigned char SlaveAddr)
{
  P1SEL |= BIT6+BIT7;               // Assign I2C pins to USCI_B0
  P1SEL2|= BIT6+BIT7;               // Assign I2C pins to USCI_B0
  UCB0CTL1 |= UCSWRST;              // Enable SW reset
  
  UCB0CTL0 = UCMST+UCMODE_3+UCSYNC; // I2C Master, synchronous mode
  UCB0CTL0 &= ~(UCSLA10+UCA10);                        //7 bit add of slave and master
  
  UCB0CTL1 = UCSSEL_2+UCSWRST;      // Use SMCLK, keep SW reset
  
  UCB0BR0 = 80;                     // fSCL = SMCLK/12 = ~100kHz
  UCB0BR1 = 0;
  
  UCB0I2COA = 0x01A5;                                                                //set own address
  UCB0I2CSA = SlaveAddr;            // Set slave address
  
  IE2 &= ~(UCB0RXIE+UCB0TXIE);         // disenable  TX&RX interrupt
  UCB0CTL1 &= ~UCSWRST;             // Clear SW reset, resume operation
  
}
/**********************************************************/
//函数名称:void I2C_WriteInit
//入口参数:无
//出口参数:无
//函数功能:I2C写数据初始化,发送模式,接收中断关闭,发送中断关闭
/**********************************************************/
void I2C_WriteInit()
{
  UCB0CTL1 |= UCTR;            // UCTR=1 => Transmit Mode (R/W bit = 0)
  IFG2 &= ~UCB0TXIFG;                //clean TX interrupt sign
  IE2 &= ~UCB0RXIE;           // disable Receive ready interrupt
  IE2 &= ~UCB0TXIE;     // disable Transmit ready interrupt
}
/**********************************************************/
//函数名称:void I2C_ReadInit
//入口参数:无
//出口参数:无
//函数功能:I2C读数据初始化,接收模式,接收中断关闭,发送中断关闭
/**********************************************************/
void I2C_ReadInit()
{
  UCB0CTL1 &= ~UCTR;   // UCTR=0 => Receive Mode (R/W bit = 1)
  IFG2 &= ~UCB0RXIFG;
  IE2 &= ~UCB0TXIE;    // disable Transmit ready interrupt
  IE2 &= ~UCB0RXIE;     // disable Receive ready interrupt
}
/**********************************************************/
//函数名称:I2C_Write
//入口参数:address:需要写入数据的设备的地址
//          data:发送的数据
//出口参数:无
//函数功能:I2C发送数据
/**********************************************************/
void I2C_Write(uchar address,uchar data)
{

  I2C_WriteInit();
  UCB0CTL1 |= UCTXSTT;          //generate start condition
  //while(UCB0CTL1 & UCTXSTT);        //generate start condition ,and transmit slave address and write bit
  while(!(IFG2 & UCB0TXIFG));   //wait start condition and equipment address transmitted
  IFG2 &= ~UCB0TXIFG;           //clean UCB0TXIFG
  while(UCB0CTL1 & UCTXSTT);    //wait slave acknowledge
  
  UCB0TXBUF=address;                //send address code
  while(!(IFG2 & UCB0TXIFG ));        //wait sending over
  IFG2 &= ~UCB0TXIFG;            // Clear USCI_B0 TX int flag
   
  UCB0TXBUF=data;                //send  data
  while(!(IFG2 & UCB0TXIFG ));                //wait sending over
  IFG2 &= ~UCB0TXIFG;            // Clear USCI_B0 TX int flag
  
  UCB0CTL1 |= UCTXSTP;            // I2C stop condition
  while (UCB0CTL1 & UCTXSTP);     // Ensure stop condition got sent
}
/**********************************************************/
//函数名称:uchar I2C_Read
//入口参数:address:需要读数据的设备的地址
//出口参数:无
//函数功能:I2C接收数据
/**********************************************************/
uchar I2C_Read(uchar address)
{
  unsigned char data;
  while (UCB0STAT & UCBUSY); // wait until I2C module has finished all operations
  I2C_WriteInit();
  UCB0CTL1 |= UCTXSTT;       // start condition generation
  while(UCB0CTL1 & UCTXSTT);
  
  
  UCB0TXBUF=address;                                                        //send address code
  while(!(IFG2 & UCB0TXIFG ));                //wait sending over
  IFG2 &= ~UCB0TXIFG;            // Clear USCI_B0 TX int flag
  
// __disable_interrupt();
I2C_ReadInit();
  while(UCB0RXIFG & IFG2);
  IFG2 &= ~UCB0RXIFG;
  data  = UCB0RXBUF;
  
  UCB0CTL1 |= UCTXSTP;            // I2C stop condition
  while (UCB0CTL1 & UCTXSTP);     // Ensure stop condition got sent
  return data;
}

/*----------------------------------------------------------------------------*/
// Description:
//   Acknowledge Polling. The EEPROM will not acknowledge if a write cycle is
//   in progress. It can be used to determine when a write cycle is completed.
/*----------------------------------------------------------------------------*/
void I2C_AckPolling(void)
{
  while (UCB0STAT & UCBUSY)
  {     
    ;// wait until I2C module has
  }  // finished all operations

  do
  {
    UCB0STAT = 0x00;              // clear I2C interrupt flags
    UCB0CTL1 |= UCTR;             // I2CTRX=1 => Transmit Mode (R/W bit = 0)
    UCB0CTL1 &= ~UCTXSTT;
    UCB0CTL1 |= UCTXSTT;          // start condition is generated
    while (UCB0CTL1 & UCTXSTT)    // wait till I2CSTT bit was cleared
    {   
      if (!(UCNACKIFG & UCB0STAT))
      {  
        break;// Break out if ACK received
      }
    }
    UCB0CTL1 |= UCTXSTP;          // stop condition is generated after
                                  // slave address was sent => I2C communication is started
    while (UCB0CTL1 & UCTXSTP)
    {   
      ;// wait till stop bit is reset
    }
    __delay_cycles(500);          // Software delay
   
  } while (UCNACKIFG & UCB0STAT);
}


// USCI_B0 Data ISR
// Notice : UCSIAB0RX_ISR should be handle with UCSIAB0TX_ISR
#pragma vector = USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_ISR(void)
{
  if (UCB0TXIFG & IFG2)      // TX
  {
    UCB0TXBUF = I2CSendBuffer[I2CSendPtr]; // Load TX buffer
    I2CSendPtr--;                          // Decrement TX byte counter
    if (I2CSendPtr < 0)
    {               
      while (!(IFG2 & UCB0TXIFG));         // wait for tx complete
      IE2 &= ~UCB0TXIE;                    // disable interrupts.
      IFG2 &= ~UCB0TXIFG;                  // Clear USCI_B0 TX int flag
      __bic_SR_register_on_exit(LPM0_bits);// Exit LPM0
    }
  }
  else if (UCB0RXIFG & IFG2) // RX
  {
    I2CRecvBuffer = UCB0RXBUF;             // store received data in buffer
    __bic_SR_register_on_exit(LPM0_bits);  // Exit LPM0
  }
}

 
点赞 关注

回复
举报
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/10 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表