运算放大器在电路中发挥重要的作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面扮演重要角色。在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电电路设计、 偏置电路设计、 PCB设计等方面的问题。在电子工程专辑网站举行的《运算放大器应用设计》专题讨论中,圣邦微电子有限公司总裁张世龙先生应邀回答与工程师进行互动。我们也基于此专题讨论,总结出了运算放大器应用设计的几个技巧,以飨读者。
一、如何实现微弱信号放大?
传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。
另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。设计注意事项如下:
1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。
2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。
3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。
4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。
二、运算放大器的偏置设置 (双电源变单电源)
在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。
三、 如何解决运算放大器的零漂问题?
有人指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题?
对此,有人分析有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。
另外还有人从数学的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑!
综上,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决:
1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。
运算放大器的重要参数
在电池供电的应用领域—特别是PDA和移动电话,由于电池电压会随着干扰而下降,因此应选择PSRR性能好(~80dB)的运算放大器。此外,要注意高增益配置,这是因为耦合到运放中的噪声将导致噪声电平升高。电阻器的选择也十分关键,更大的阻值会产生更高的噪声。设计师可以利用4?估算约翰逊噪声(Johnson noise)或电阻噪声,这里R的单位是K欧姆,因此100K欧姆电阻产生大约40nV噪声!
如果运用多个运算放大器,减少噪声的一个方法是采用图1所示的方案。该方法可以按因子??减少输出噪声,这里n是使用的放大器数量。对于LMV651而言,输出噪声将减少到大约12nV/??。此外设计师必须考虑限制带宽以使噪声最小:设计师可以将一个小电容与反馈电阻并联使用,借此降低噪声。
运算放大器的选择也取决于其它的器件。设计师面对的一个普遍挑战是为模数转换器(ADC)选择合适的运算放大器。尽管市场上有许多类型的数据转换器,但是运算放大器和模数转换器之间的匹配规则却不一样,设计师在做出选择之前必须认真考虑某些准则。
图1 多个运算放大器减小输出噪声
大致浏览两种器件的数据手册将提供有用的信息,但这还不够。首先,挑选供电电压相同的运算放大器和模数转换器。然后选择THD+N小的运算放大器。如果不能查找到失真数据,就查看输出阻抗:输出阻抗小的运算放大器通常意味着更小的THD。速度是另外一个必须考虑的参数,尽管更快的运算放大器速度用起来很舒服,但必须考虑一些折衷因素,譬如更高的功率和偶尔的不稳定。
根据选择的ADC,设计师应选择至少为ADC取样率50倍速度的放大器。转换速率也可能是一个限制因素,设计师可以根据2?fVp进行计算,这里f是输入信号频率,Vp是最大输出摆幅。例如,频率为400kHz的100mV输入信号(增益为10)要求放大器的转换速率至少为2.5V/μs。
一旦确定了这些基本参数,设计师必须考虑稳定时间,该参数可能会产生误导。大多数制造厂商规定运算放大器的稳定时间在特定输入电压的0.1%或0.01%范围内。如果设计要求更高的精度,例如16位,那么就需要满量程0.0015%范围的参数。解决该问题的一个方法是利用下面的公式,基于模数转换器的精度来估计运算放大器的稳定时间:
这里,N是位数,f是放大器的开环带宽。
例如增益为10的运算放大器,如LMV651,精确度为12位时,稳定时间大约为1.4μs;精度为16位时,稳定时间是1.65μs。该公式只是一个近似算式,没有考虑到杂散电容、主板电感或模数转换器的输入电容,这些因素都将影响稳定时间。
做出最终的选择之前,最重要的的指标之一是运算放大器的噪声,噪声较高的放大器会降低模数转换器的精度,给系统带来显著误差。开始计算电路总输出噪声之前(这可能是一项十分冗长乏味的工作),最好先估计一下。这样设计师就知道是否应继续使用所选的放大器。该估
计涉及到运算放大器在相关带宽上的综合电压噪声和运放配置的增益。我们可以将该公式表述为:
这里,NG是噪声增益,en是运算放大器的电压噪声,BW是闭环带宽。
在图2的电路中,在输出端采用简单的低通滤波器。在该例中,输出噪声是在该滤波器带宽(按1/2πRC计算)下的综合噪声。如果采用二阶滤波器,带宽要乘以系数1.05。
利用上述公式和LMV651电压噪声密度(17nV/??),图2电路在100kHz带宽(滤波器带宽)下的总输出RMS噪声是53.7V。一旦估算出总输出噪声,设计师可以利用下面的公式计算运算放大器的信噪比(SNR):
这里,VFS是满量程电压范围,Eout是上文计算的运算放大器噪声。例如,2.5V信号产生的信噪比是86.4dB。
然后,设计师应根据下面的公式计算放大器和模数转换器的总SNR:
ADC121S021的SNR是72.3dB,当ADC121S021与LMV651搭配时,总SNR是72.1dB。忽略谐波,设计师可以将该SNR转换为等效的比特数:ENOB=(SNR-1.76)/6.02,然后根据等价比特数确定只损失了大约0.3dB,这相当于0.03%总精度误差。
由于噪声是特定带宽下的综合噪声,显然噪声也与带宽成比例。换言之,缩减带宽将减少噪声;扩展带宽将增加噪声。如果决定选择更高带宽的滤波器,设计师应考虑选择更低噪声的放大器。例如,图2电路中的10MHz滤波器产生不足71dB的总SNR,导致0.5比特损失。但将LMV791(5.8nV/)与相同的滤波器搭配使用时,SNR提高到72dB以上。设计师只要简单的选择更低噪声的运算放大器就可以提高系统的精度。但必须考虑与此相关的各种折衷因素,例如功耗和封装尺寸。
图2 在运算放大器的输出端采用假单的低通滤波器
待考虑的其它规格指标
至此,我们讨论了为设计选择器件的基本原则和规则,但还有其它的一些因素有待考虑。例如,对于要求更高精度的应用,DC指标(譬如输入偏移电压和漂移)可能非常重要。
[ 本帖最后由 lixiaohai8211 于 2010-3-3 13:19 编辑 ]
|