15151|32

77

帖子

0

TA的资源

纯净的硅(初级)

楼主
 

快快乐乐跟我学开关电源设计 [复制链接]

 

转自ourdev,非常好的学习指导,推荐给大家。


“我想DIY开关电源,要具备哪些理论知识、实践技能和工程素质啊?”
    “如何从给定的设计规格设计出开关电源?具体步骤是什么?”
    “开关电源中的电感、变压器怎么自己制作?控制芯片如何选型?”
    “如何选择磁芯外形、变频器类型、工作频率、计算各种参数呢?”
    “如何进行优化和折中?”
    ......
     
    电源是一切电子设备的心脏,没有电源,电子设备就不可能工作。《增值包》用户希望了解目前最流行的开关电源设计制作方法,为此,我们提供此入门文档,完善《增值包》知识库体系,满足用户需求。虽然市面上有很多介绍开关电源的书籍,但仍然缺少快速入门及经验总结类的资料,所以,尽管资料丰富,但还是有很多人不知道怎样利用。当然这篇文档只是入门介绍,深入研究还要看其他专著。
     
    从电网得到的交流电或由电池取得的直流电是随环境温度、时间和负载所变化的,它们不能直接成为电子设备所需的内部电源。电子设备由于要完成许多高级的功能,对其供电电源的精度随环境的变化,动态响应能力,还有很多其他的指标都有非常高的要求。将电网或电池的一次电能转换为符合电子设备要求的二次电能,这样的变换设备就是我们这里要讲的电源。
     
    随着片状电子元件、表面安装技术及大规模集成电路的发展,电子产品越来越小型化、轻型化,如何缩小电源的体积减轻重量,提高电源的转换效率,增强对电网电压的适应性,是人们致力于研究的重点。
     
    一个比较好的解决方案是:以轻巧的高频变压器取代笨重的工频变压器,采用脉冲调制技术的直流--直流变换器型稳压电源,即我们马上就要讲到的开关电源。
     
    开关电源具有管耗小、效率高、稳压范围宽及体积小、重量轻等优点,目前已在各种电子仪器和设备、航空和宇宙飞行器、发射机、电子计算机、通讯设备和电视机、录放像机等中得到了广泛应用。
     
    开关电源按变换方式可分为以下四大类:
    1、AC/DC    开关电源
    2、DC/DC    开关电源
    3、DC/AC    逆变器
    4、AC/AC    变频器
     
    目前只将前面两类称为开关电源,将后面两类分别称为逆变器和变频器。
     
    开关电源按应用方式可分为以下三大类:
    1、外置电源
        与设备分开放置的电源模块或电源系统,如:
        ---通信用一次电源模块和系统
        ---电力操作电源模块和系统
        ---手机电池充电器
        ---笔记本电脑的Adapter
        ---各类手提设备、便携设备的电池充电器等等
    2、内置电源
        放在设备内部的电源模块或电源系统,如:
        ---计算机内部的SilverBox和VRM
        ---家电(如:普通电视机、等离子电视机、液晶电视机)内部的供电电源
        ---工业控制设备内部的电源
        ---仪器中使用的电源
        ---通信设备内部的电源模块和系统
        ---复印机、传真机、打印机等的内部电源等等
    3、板上电源
        放在设备内单板上的电源模块,如:
        ---标准砖类电源(全砖、半砖、1/4砖、1/8砖)
        ---非隔离POL(Point of Load 负载点)变换器
        ---VRM(Voltage regulator module电压调节模块)和VRD(Voltage regulator down)
        ---小功率SMD电源
        ---SIP和DIP电源等等
     
    开发一个开关电源产品所需要的基本技能:
    1、认识组成开关电源的所有元器件
    2、掌握各种元器件的电气性能和电路符号
    3、会自己制作各种磁芯元件
    4、会正确装配电源中的各个部分
    5、了解电源各项指标的意义并掌握如何测试的方法
    6、会使用仪器对装配后的电源进行正确的调试,优化和折中
    7、会对获得的实验结果进行分析,并进行总结
    8、会从不同渠道不断地学习电源知识并能够和别人交流
     
    开发一个开关电源产品所需要的专业理论知识:
    1、有源PFC的拓扑分析,控制与设计
    2、DC/DC功率变换器的拓扑与稳态分析
    3、开关电源的功率级参数设计
    4、开关电源的控制与动态分析
    5、开关电源的小信号分析与设计
    6、开关电源的大信号分析与设计
    7、开关电源的EMI分析与设计
    8、开关电源的热分析与设计
    9、开关电源的容差分析与设计
    10、开关电源的各种保护技术
    11、开关电源的同步整流技术
    12、开关电源的模块均流控制技术
     
    有些技术很成熟了,只要查表或者使用现成电路或专用芯片就可以做好。
    EMI比较困难,因为元件特性会变化。PCB布线也比较讲究,可以参考《快快乐乐跟我学高速PCB设计》一书。
    这些专业知识如何获得呢?
    1、参加专业会议
    2、书本上
    3、参加培训
     
    -------
    ATX电源
    -------
     
    一个非常容易找到的开关电源就是PC机里用的ATX电源了。拆开电源可以看到里面的构造:
    1、220V 50HZ交流输入
    2、保险管
    3、交流互感滤波(对高于50HZ高次谐波滤波,避免对后面电路的高频干扰)
    4、二极管桥式整流电路
    5、滤波电容
    6、开关管
    7、开关变压器
    8、辅助电源(为电源监控部件、保护电路、控制电路等电路供电。)
    9、开关激励脉冲形成电路(集成电路TL494和LM339比较器,开关振荡稳压控制,控制开关管)
    10、光耦/激励变压器(将激励脉冲送到开关管的桥梁)
    11、高频滤波电感和电容(滤除高次谐波)
    12、直流电压输出
     
    ATX接口定义:(有防插反缺口)
    ATX主板电源接口
        +3.3VDC  +3.3VDC  COM  +5VDC   COM  +5VDC  COM  PWR_OK  +5VSB  +12VDC
        +3.3VDC  -12VDC   COM  PS_ON#  COM  COM    COM  -5VDC   +5VDC  +5VDC
     
    硬盘、光驱电源接口
        +12VDC  COM  COM  +5VDC
     
    软驱电源接口
        +5VDC  COM  COM  +12VDC
     
    AUX电源接口
        COM  COM  COM  +3.3VDC  +3.3VDC  +5VDC
     
    p4主板12V电源接口
        COM     COM
        +12VDC  +12VDC
     
    ATX采用颜色区分,仅凭颜色就可以知道电压值:
    白色 -5V
    红色 +5V
    黑色 地
    黄色 +12V
    蓝色 -12V
    橙色 +3.3V
    灰色 POW_OK  +5V 开机自检启动信号
    紫色 +5VSB   待机电源
    绿色 PS_ON#  +5V 电源启停控制
     
    几个控制信号的说明:
    POW_OK信号(在AT电源中及部分电源板上称P.G信号)为微机开机自检启动信号,为了防止开机时各路输出电路时序不定,CPU或各部件未进入初始化状态造成工作错误及突然停电时,硬盘磁头来不及移至着陆区造成盘片划伤,微机电源中均设置了POW_OK信号。
     
    PS_ON#信号:ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSB、PS_ON#”的组合来实现电源的开启和关闭,只要控制 “PS_ON#”信号电平的变化,就能控制电源的开启和关闭。电源中的S-ON控制电路接受PS_ON#信号的控制,当“PS_ON#”小于1V伏时开启电源,大于4.5伏时关闭电源。主机箱面上的触发按钮开关(非锁定开关)控制主板的“电源监控部件”的输出状态,同时也可用程序来控制“电源监控件”的输出,如在WIN9X平台下,发出关机指令,使“PS_ON#”变为+5V,ATX电源就自动关闭。
     
    +5VSB:待机电源,上电后一直存在,该输出连接到ATX主板的“电源监控部件”,作为它的工作电压,使操作系统可以直接对电源进行管理。通过此功能,实现远程开机,完成电脑唤醒功能。
     
    ATX电源需要短接PS_ON#和COM(即ATX主板电源接口的14脚和15脚短接)才能启动(此时电源散热风扇转动)。

此帖出自电源技术论坛

最新回复

不错  详情 回复 发表于 2017-6-14 14:12
点赞 关注(5)
 
 

回复
举报

77

帖子

0

TA的资源

纯净的硅(初级)

推荐
 
------------------
    开关电源变压器设计
    ------------------
     
    开关电源变压器是开关电源中的核心部件,作用有三:磁能转换、电压变换和绝缘隔离。由于开关变压器的工作频率很高,因此它的体积和重量比工频变压器大为缩小,同时变压器的分布参数亦不能忽略。设计时需要考虑磁芯材料选择,磁芯与线圈的结构,绕制工艺等。
     
    开关电源变压器工作于高频状态,分布参数有漏感、分布电容和电流趋肤效应。一般根据开关电源电路设计的要求提出漏感和分布电容限定值,在变压器的线圈结构设计中实现,而趋肤效应则作为选择导线规格的条件之一。
     
    开关电源变压器的工作状态与开关型功率变换器的电路形式有关,一般根据功率大小,使用要求,采用不同形式的功率变换器。不同的电路形式,开关电源变压器工作状态也不同,对开关电源变压器也提出了不同的设计要求。
     
    变换器形式有:双极性(推挽式、全桥式、半桥式),单端正激式,单端反激式等。
     
    开关电源变压器中使用的是软磁材料。比如:铁氧体材料。铁氧体材料很容易加工成各种形状,可根据开关变压器的电路类型、使用要求、功率等级、经济指标等选用合适的磁芯形状。磁芯型号主要有:EE、EI、EC、ETD、G、GK、H、HQ、UY、UF、PM、RM。每种型号又有很多尺寸规格可以选择。
     
    开关电源变压器参数计算:漏感计算、分布电容计算、穿透深度(导线选择)、交流电阻计算、电流有效值。
     
    开关电源变压器设计
    设计内容:
    1、磁芯规格
    2、匝数与导线规格
    3、损耗与温升
    4、导线结构:多股线或扁平线
    5、绕组结构:多层或分段饶制
    6、端空设计:按绝缘电位设计端空
     
    设计条件:
    1、电路形式:给出变换器的形式,输入输出电路及所用元器件
    2、工作频率或周期
    3、变换器输入最高、最低电压
    4、输出电压和电流
    5、开关管最大导通时间
    6、开关管导通电压降及整流二极管正向电压降
    7、隔离电位
    8、要求的漏感或分布电容
    9、温升要求
    10、磁芯形状
    11、工作环境条件
     
    设计参数的确定:
    1、磁感应强度B和电流密度J
        磁感应强度B、变压器铜耗Pm、电流密度J
    2、变压器和线圈的结构参数
        铜线占空系数、平均匝长、变压器表面积、磁芯结构常数
     
    开关电源变压器设计举例(略)
     
    铁氧体材料的开关电源变压器采用标准化设计,通过查表的方法简化工作量。
    表格包含了如下信息:
     
    变换器类型
    工作频率
    变压器温升
    磁芯规格
    技术指标
        直流功率、增量磁感、剩余磁感、电流密度、电压调整率、电感系数
    损耗指标
        磁芯损耗、线圈铜耗、散热面积、单位损耗、效率
    结构参数
        结构常数、平均匝长、等效截面、磁路长度、气隙厚度、磁芯体积
    线圈参数
        初级每匝伏数、次级每匝伏数、绕线宽度、绕线厚度、占空系数
     
    ----------------------------
    不同形状的铁氧体磁芯电感计算
    ----------------------------
    略
     
    ----------------
    开关电源设计举例
    ----------------
    设计一个标准的多输出电源:
    稳态设计规格:
    1、输入电压范围:85 ~ 264 VAC
    2、输出#1:5V/50A
       输出#2:3.3V/40A    满足:I1 + I2 <= 55A
       输出#3:12V/12A
       输出#4:-12V/4A
    3、输出电压纹波:
    4、模块满载效率:>=70%
    5、输入功率因数:0.99TYP
    6、电压调整率:<= +-1%
    7、负载调整率:输出#1  <=+-0.5%,其它输出  <=+-3%
    8、模块几何尺寸:长 * 宽 * 高
    9、模块环境温度:-20 ~ 50摄氏度
    10、温度系数:<= 0.02%
    11、输出保持时间:16ms
     
    具体设计步骤(略)
     
    设计必须实现的功能:
    1、全范围内的正常开关机
    2、全范围内的输出稳压且满足各项电性能指标
    3、实现规格书要求的自动保护
    4、输出#1 ~ 输出#3的输出并联均流
    5、输出#1和输出#2的远端补偿
    6、实现规格书的安全要求
    7、实现规格书的EMI要求
    8、实现规格书的热插拔要求
    9、实现规格书的MTBF要求
    10、实现规格书的成本要求
    11、实现规格书的通断逻辑功能要求
     
    ----------------
    开关电源设计优化
    ----------------
     
    当我们设计完成一个开关电源以后,只是大致实现了其功能和指标,还需要进行各种优化。
     
    1、功率级参数的优化
        在选定功率级拓扑后,可利用前面的知识和稳态工作点选择对功率参数进行优化,使得:
        ---开关功率器件的损耗最小
        ---功率变压器和滤波器电感,滤波电容等的体积最小
        ---电源整机的功率密度最高
        ---功率级的Layout最合理等等
        在这些优化中,最重要的是功率变压器的优化,其变比,其绕法都会直接影响其他功率元器件的选择和整个功率级的效率及功率密度。合理地选择功率开关器件和它们的驱动电路及吸收电路,对功率级的性能也很重要。
     
    2、环路参数的优化
        在选定功率级拓扑和控制策略后,可利用前面的知识在功率级参数优化的基础上,对环路参数进行优化,使得:
        ---尽量减小闭环电压音频隔离度,从而减小PFC滤波电容
        ---尽量减小闭环输出阻抗,从而减小DC输出滤波电容
        在环路优化中,最重要的是补偿器参数,调制器参数(如外部斜波补偿含量)和光耦电路参数的优化。其中,电源整机的PCB Layout对环路的影响非常大,只有在好的PCB Layout下面,通过环路各部分参数的优化,才能使电源环增益的带宽尽可能大,从而实现更好的动态性能和更高的功率密度。
     
    3、辅助电源参数的优化
        在采用绕组供电的开关电源产品中,必须对辅助电源的质量进行优化,使得:
        ---辅助电源对开关电源稳态性能的影响最小
        ---辅助电源对开关电源动态性能的影响最小
        ---辅助电源不会影响开关电源整机的可靠性
        采用变压器绕组或电感绕组的辅助电源,其输出电压的质量一般不太好,通过对辅助电源的优化,要保证自供电后的电源整机性能变化最小,可靠性没有问题。
     
    4、其他优化
        ---电源内各种保护电路的优化
        ---EMI滤波器电路的优化
        ---电源内部热环境的优化
        ---电源其他功能电路(如:均流、同步、热插拔、远端补偿等等)的优化
        ---PCB Layout的优化等等
此帖出自电源技术论坛
 
 
 

回复

77

帖子

0

TA的资源

纯净的硅(初级)

板凳
 
----------------
    开关电源设计折中
    ----------------
     
    设计开关电源是个充满矛盾的过程,鱼和熊掌不可得兼,需要平衡折中各种指标,这个火候的掌握和拿捏需要大量经验。前面谈了优化,现在谈折中,有时反而需要减少优化程度,真是奇妙啊!
     
    1、稳态性能与动态性能的折中
        很多功率级拓扑,其稳态性能与动态性能通常难以兼顾,稳态性能好,动态性能就差,动态性能好,稳态性能就差。这种例子非常多,所以选择拓扑时,一定要根据要求和应用场合来合理选择。
        即使同一个拓扑,其功率级参数设计时,也要考虑稳态性能和动态性能的折中。如:输出滤波器电感的设计,对效率而言,希望其越大越好,但对动态性能而言,则希望其小一点好,所以设计时需要折中。
     
    2、功率密度与可靠性的折中
        很多有更高功率密度的拓扑,其实现时会比较复杂,而且往往拓扑本身还有可靠性较低的隐患,所以,选择拓扑结构时也要根据可靠性和性能来进行具体折中。如一些实现软开关的拓扑,一般可实现更高的开关频率,具有更高的功率密度,但他们在实现的产品中,可靠性往往较低。
     
    3、小信号性能与大信号性能的折中
        在一个电源中,有很多性能需要满足,利用不同的控制策略,不同的补偿电路会得到不同的动态性能。有些控制策略或参数对输入端的扰动具有较强的抑制能力,有些则对负载端的扰动具有较强的抑制能力,有的参数对小信号动态稳定性很好,但在大信号下,其可能不稳定,有的参数能满足大信号的要求,但小信号下其会变差,因此,要对大小信号的动态设计进行折中。
     
    4、高低温下的设计折中
        在一个电源中,因各种参数都是与其工作时的温度有关,所以必须找出一组参数能在全部环境温度范围内满足所有性能指标,这需要做很多折中。
     
    5、电性能与热性能之间的折中
        在一个电源中,电性能(如电应力和EMI性能)与热性能之间的要求是矛盾的。为了获得好的EMI和低的电应力,希望功率元器件的回路尽量小,但这会使得各元器件之间的热影响更厉害,各元器件的损耗会更大。将各功率元器件之间的回路加大,可减小这种热影响,改善热设计,但因寄生参数的增加,会使器件的电应力增加,效率变低,EMI性能变坏,所以,电源中热与电两个设计是非常需要折中的。
     
    6、关键部件的折中
        在开关电源中,有一些关键部件,在设计时需要折中。如:功率变压器的设计,对稳态效率性能而言,在变比等已经最优化后,希望其漏感最小,但在实现漏感最小的同时,往往会增加绕组之间的分布电容,这通常会增加共模EMI干扰和降低安全性。
        另外,如驱动能力的折中。为了减小功率开关器件(MOSFET)的开关损耗,希望其开关过程尽量短,这可通过减小门级驱动电阻来实现,但在开关速度提高的同时,往往会增加电源的共模EMI,使得EMI特性变差。
     
    7、其他折中
        做好一个开关电源,还有很多其他折中要做,总之,因为开关电源是一个在一定边界(由输入电压、负载电流和环境温度组成的长方体)之内,满足规格书要求的功率电子产品,既有功率处理和信息处理,又有热处理,所以,为了做好这样的产品,必须要做很多很多的折中。这要求开发人员了解如何在折中的基础上优化,在优化的基础上折中,使开发的电源产品达到最佳的性价比。
     
    --------------------
    如何做好开关电源设计
    --------------------
     
    目前,国内多数电源公司在产品开发中存在怪圈现象:公司业务接了一个单子,时间只有一个月,设计人员赶紧开始,草草设计一周后搞定PCB,然后安装调试,装完就通电,嘿,输出有了,一测试指标,一堆不达标,脑子乱乱的,改进再调,解决了一个问题又冒出一个,每天加班加点,时间过得真快,一个月时限马上到了,工作没完成,请求延期,半年后勉强完成了,累得筋疲力尽,不得喘息,立马又进入下一个项目循环。
     
    公司由于开发管理不规范,没有任何技术积累;员工由于开发工作不专业,在开发过程中无任何提高。要想打破怪圈,不参加培训是不行的。《快快乐乐跟我学开关电源设计》就是《增值包》平台提供的关于开关电源设计的培训方案。通过培训,公司可以规范开发过程,员工的技术水平可以在项目中获得提高。
     
    从工程师个人角度来说,养成制定个人工作计划,按规范做设计、调试、总结的习惯,是成为资深电源开发人员所必须具备的工程素质。
     
    按规范做设计的步骤是:
    1、仔细阅读产品的开发规格书
    2、按规范绘制产品的功能结构总框图
    3、用功能结构总框图描述产品的基本功能实现
    4、用功能结构总框图描述产品的正常开关机过程
    5、用功能结构总框图描述产品的故障保护过程
    6、设计功能结构总框图中的各个单元电路并撰写设计总结
    7、绘制出一整套设计图纸
     
    按规范调试的习惯:
    开发人员要能够养成按规范开发操作步骤开发产品的习惯,那就不会出现很多不必要的反复,就可避免出现前面介绍的那种怪圈,就可以将产品开发工作做得又好又快,同时开发人员还能在很短的时间内提升自己的专业水平,过不了多久,就可以从一个新手上升为资深电源工程师。详细的电源开发操作规范留到课上再说。
     
    按规范做总结的习惯:
    在按规范进行开发时,每做一个实验后,都要做一份实验总结,产品开发完成后,还要将整个开发工作进行总结。作为开发人员,总结是保证自己技术水平迅速提高的最重要的手段,所以,你想早点成为资深工程师,你就一定要认认真真地做好每一份总结。

[ 本帖最后由 半导体狂人 于 2009-12-9 09:53 编辑 ]
此帖出自电源技术论坛
 
 
 

回复

77

帖子

0

TA的资源

纯净的硅(初级)

4
 
《变压器设计心得》

开关电源设计中最困难的是变压器/电感线圈设计制作和PCB Layout及结构外壳加工,其他部分可能就是标准单芯片解决方案电路,照着参考电路抄即可。PCB Layout决定电源的EMI性能、热性能,对此感兴趣的读者可以参看《增值包系列---快快乐乐跟我学高速PCB设计》。下面主要说说DIY绕制变压器/电感线圈的心得体会。
     
    ----------
    变压器原理
    ----------
    当我们把导线插入220V电源插座,就会发生短路现象,可是插入变压器就不会,区别就在于变压器原边的线圈导线是绕在铁芯上的,难道仅仅因为多了个铁芯,导线就失去短路作用了吗?是的,导线插入铁芯后就变成了电感线圈,根据楞次定律:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,(注意:“阻碍”不是“相反”,原磁通量增大时方向相反,原磁通量减小时方向相同;“阻碍”也不是阻止,电路中的磁通量还是变化的。)变压器原边将产生一个大小相等,方向相反的反向电动势抵消输入的220V电压,导线中仅有微弱的励磁电流流过(维持磁场需要有一个电流),所以,导线失去了短路作用。
     
    如果真是这样,那么在铁钉上绕几圈漆包线,再把导线插入220V电源插座,是不是就不会短路了?肯定会短路的。原因就是铁芯磁饱和了,无法产生反向电动势抵消输入电压,此时,导线还是相当于短路线。拆开变压器,可以看到,线圈匝数很多,额定功率越大的变压器,铁芯体积越大,其中的原因就是为了让变压器工作在变压器状态,而不是进入磁饱和状态。
     
    也就是说,我们实际中使用的变压器都是非理想的,有可能进入磁饱和状态,从而失去变压器功能。我们设计变压器的目的就是保证在额定电压,额定功率下,变压器正常工作。如果真的存在理想变压器就不需要我们设计了。
     
    ----------
    变压器设计
    ----------
    除了满足正常工作的要求外,变压器设计还要满足:体积、重量、温度、成本等要求,所以,实际变压器的设计可不是一件容易的事情。书本上的理论分析全都是用的理想变压器,书上说变压器可以实现变压、阻抗匹配、隔离等等功能,但是隐含前提是变压器工作在变压器状态,如果饱和了,那就没有这些功能了。
     
    一个实际变压器还存在导线电阻、漏感、分布电容、分布电感、温升(铜损、铁损)等等问题,根据不同的变压器类型,有些参数不能忽略。
     
    制作变压器我们需要知道以下信息:
    1、磁芯规格(磁芯形状、磁芯大小、磁芯材料)
    2、匝数与导线规格(原副边匝数、导线直径)
    3、损耗与温升
    4、导线结构:多股线或扁平线
    5、绕组结构:多层或分段饶制
    6、端空设计:按绝缘电位设计端空
     
    磁芯规格其实就是要确定横截面积和工作点。一般功率决定横截面积大小,功率越大,横截面积越大。有经验公式可以快速根据功率确定横截面积,也可以直接查表。
     
    磁芯材料确定后,根据其特性曲线,我们要选择合适的工作点B0。B0太大会导致磁饱和,太小又会使得体积庞大、重量沉、功耗大、成本高。
     
    当电源频率、工作点B0、横截面积都确定后,就可以计算出每伏匝数,用输入电压除以每伏匝数就可以得到原边匝数。进而可以求得副边匝数。
     
    导线直径取决于电流密度,而电流密度又取决于电压调整率或温升,受二者共同约束,哪个约束条件算出来的J值小,就选择哪个J值。J值小肯定不会有温升/电压调整率问题,但也不是越小越好,J小的话,导线直径太粗,铜重量大、体积大、成本高,有时线包厚度可能超过铁芯窗口尺寸,根本无法绕制。
     
    电流密度J和温升有什么关系呢?很多初学者可能想到去查书,其实,变压器设计是一项实践性很强的工作,理论派这时已经玩不转了,此时需要大量实践经验。也有人可能会抱怨资料不足,这不是问题,没有资料可以做实验得到。就象没有DIP器件封装数据,你完全可以直接用尺子量出引脚间距来。不知道程序出错原因,完全可以通过调试找到。
     
    温升和铜损铁损有关,和散热条件有关,带散热片的温度就低,散热片上有风扇的温度更低,风扇转速快的肯定温度又要降低了。此外,还和外部环境温度有关,在南极零下50度,温升就不是问题,在赤道沙漠里,温升可能导致铁芯磁特性曲线飘移,进而磁饱和,失去变压器功能。总之决定温升的因素很复杂:管芯到封装的热阻、接触面积、接触面光滑度、导热硅脂、散热器材料体积、表面积、鳍形、涂层材料、颜色、空气密度、流速等共同决定温升。
     
    因此,电流密度J和温升的关系只能凭经验确定了。一般通过经验公式确定。所谓经验公式是指:通过一系列结果可重复的实验,得到数据曲线,使用数值分析方法多项式拟合,得到经验公式。此公式在我们的经验范围内正确,可以准确预测结果,可以重复验证。注意:经验公式存在局限性,如果预测结果不对,就需要再次修正经验公式,增加我们的经验。由此可知,经验越多,越不容易出错,想要设计好变压器需要积累大量经验。
     
    毕竟,变压器是一种商品,我们没有必要每次都从头设计,那样太浪费时间。此时,利用表格、EXECL电子表格、经验值可以大大加快设计速度。
     
    比如:可以规定电流密度J选2.5A/平方毫米,内绕组J适当降低,外绕组J适当提高,散热好的甚至可以达到10A/平方毫米,这样就不用详细计算了。
     
    ----------
    变压器类型
    ----------
     
    电源(工频)变压器
     
        最常见的变压器,输入220VAC 50HZ,输出各种直流电压。
        因为频率低,基本不考虑分布参数,可以乱绕。
     
    ----------------------------------------------------------------------------------------------------
     
    隔离变压器
     
        变比一般为1:1,主要目的是隔离。因为市电零线接大地,人碰到热底板上的零线相对还算安全,一旦碰到火线,就会和大地形成回路,导致触电。经过变压器隔离后,人单独碰到任何一根线都不会触电,两根线对地浮空,都不会和大地形成回路,电压只存在于两根线之间,所以安全。
     
    ----------------------------------------------------------------------------------------------------
     
    音频变压器
        输入变压器
        级间变压器
        输出变压器
        线间变压器
        匹配变压器
        调幅变压器
     
        电子管/晶体管收音机/音响中,需要在各级放大电路之间增加变压器进行阻抗匹配和谐振,使得后级获得最大输出功率。收音机里的变压器俗称中周。
         
        音频变压器中的频率较高,不能忽略分布参数,而且,要把晶体管输入输出电阻折算到变压器中。一般先抽象出一个等效电路,再简化,然后根据分布参数约束条件获得等效电路各参数值。有了这些信息,就可以计算出功率,进而得到横截面积,线圈匝数,导线直径等等变压器绕制参数。这样我们就可以得到满足分布参数要求,能够工作在变压器状态(不饱和),具有正确阻抗变换功能的变压器了。
     
        为什么三极管集电极接在中周的中间点?
        这种部分接入的主要目的是减小三极管输出电阻rce对谐振阻抗及Q值的影响。
        设中周的中间点到直流电源点的圈数为n1,中周初级线圈总圈数为n2,变比n=n2/n1,当rce并连到n1线圈时,折算到n2线圈将是rce的n方倍,使谐振阻抗及Q值只有少量下降,保证了足够的电压放大倍数和选择性指标。
        早期的电子管收音机中,由于电子管的输出阻抗极大,根本不用考虑这个问题,所以在电子管电路中就不存在“接中周中间点”的接法。
         
        大部分人做过收音机,但是很少人自己设计绕制中周和输入输出变压器,现在学习了音频变压器设计,你就可以自己绕了,再不用担心买不到合适的中周变压器了,哈哈。注意:音频变压器对工艺要求较高,不太容易成功。另外,玩胆机(电子管)音响的朋友更是需要自己绕变压器了,尽管电子管和晶体管有点差别,但是学习了以上内容,自制变压器就不是难事了。
     
    ----------------------------------------------------------------------------------------------------
     
    脉冲变压器
     
        我们在8019网卡芯片中就用到了脉冲变压器,起隔离作用,变比1:1。想不想知道这种变压器是怎么设计的呢?想不想自己绕一个呢?
         
        其实脉冲变压器也是变压器的一种,只不过脉冲波含有大量频率分量,不能忽略分布参数影响,绕制工艺要求高,一般也要先抽象出一个等效电路,再简化,然后根据分布参数约束条件获得等效电路各参数值。与音频变压器不同的是,其约束条件参数不一样。脉冲波形参数约束条件有:峰值脉冲幅度、脉冲持续时间、脉冲上升时间、脉冲下降时间、顶降、脉冲顶峰、过冲、反摆、回摆、恢复时间。根据这些信息,就可以计算出功率,进而得到横截面积,线圈匝数,导线直径等等变压器绕制参数。这样我们就可以得到满足分布参数要求,满足脉冲波形参数约束条件要求,能够工作在变压器状态(不饱和),能够正确传递脉冲能量(脉冲波形变化符合要求)的变压器了。
         
        哈哈,本站的51 + 8019上网卡可以不用汉仁的隔离变压器了,自己绕一个吧,工艺处理好的话,完全不成问题,DIY的乐趣更大了。
     
    ----------------------------------------------------------------------------------------------------
     
    开关电源变压器
     
    ----------------------------------------------------------------------------------------------------
     
    特种变压器
        稳压变压器
        霓虹灯变压器
        微波炉变压器
        机场助行航灯光用变压器
        超隔离变压器
        传输线变压器
     
    ----------------------------------------------------------------------------------------------------
     
    铁芯电感器
        电源滤波扼流圈
        交流扼流圈
        电感线圈
        镇流器
        超声换能器用匹配电感
        铁氧体磁芯电感
此帖出自电源技术论坛
 
 
 

回复

76

帖子

0

TA的资源

一粒金砂(高级)

5
 
进入这个帖子,居然挖到芯币了,简直是我的幸运帖,要好好看看
此帖出自电源技术论坛
 
 
 

回复

76

帖子

0

TA的资源

一粒金砂(中级)

6
 
不错呵呵,好东西,拿走了
此帖出自电源技术论坛
 
 
 

回复

46

帖子

0

TA的资源

一粒金砂(初级)

7
 

乱来

:L
此帖出自电源技术论坛
 
 
 

回复

27

帖子

0

TA的资源

一粒金砂(初级)

8
 
此帖出自电源技术论坛
个人签名励志做名电子工程师
 
 
 

回复

27

帖子

0

TA的资源

一粒金砂(初级)

9
 
不错的帖子,要是有相关例子就更好了
此帖出自电源技术论坛
个人签名励志做名电子工程师
 
 
 

回复

175

帖子

0

TA的资源

一粒金砂(中级)

10
 
呵呵,不错
此帖出自电源技术论坛
 
 
 

回复

618

帖子

0

TA的资源

一粒金砂(中级)

11
 
好资料!!!!
此帖出自电源技术论坛
 
 
 

回复

1万

帖子

16

TA的资源

版主

12
 

你觉得学容易做难,比如那个脉冲变压器,你上哪搞啊

此帖出自电源技术论坛
个人签名http://shop34182318.taobao.com/
https://shop436095304.taobao.com/?spm=a230r.7195193.1997079397.37.69fe60dfT705yr
 
 
 

回复

4

帖子

0

TA的资源

一粒金砂(初级)

13
 
谢谢,很好!
此帖出自电源技术论坛
 
 
 

回复

10

帖子

0

TA的资源

一粒金砂(初级)

14
 
很好的帖子~~  谢谢啦
此帖出自电源技术论坛
 
 
 

回复

29

帖子

0

TA的资源

一粒金砂(初级)

15
 
强悍的帖子,我也挖到芯币了,呵呵
此帖出自电源技术论坛
 
 
 

回复

6

帖子

0

TA的资源

一粒金砂(初级)

16
 
:carnation: 不错的帖子
此帖出自电源技术论坛
 
 
 

回复

9

帖子

0

TA的资源

一粒金砂(初级)

17
 
要是有实例一定不错
此帖出自电源技术论坛
 
 
 

回复

34

帖子

0

TA的资源

一粒金砂(初级)

18
 

此帖出自电源技术论坛
 
 
 

回复

14

帖子

0

TA的资源

一粒金砂(初级)

19
 
不错不错的啊!在做电源有的还是很有用的资料啊!
此帖出自电源技术论坛
 
 
 

回复

25

帖子

0

TA的资源

五彩晶圆(初级)

20
 
怎么下载资料呢   
此帖出自电源技术论坛
 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/7 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表