|
前 言 锂离子电池保护芯片的设计与其封装结构密切相关,如图1所示为封装在锂离子电池内部的保护电路的基本结构。在正常情况下,充电控制端CO 和放电控制端DO 为高电位,N型放电控制管FET1和充电控制管FET2处于导通状态,电路的工作方式可以是电池向负载放电,也可以是充电器对电池进行充电;当保护电路检测到异常现象(过充电、过放电和过电流)时,使CO或DO输出低电平,从而切断充电或放电回路,实现保护功能。
为了有效利用放电电流或充电电流,FET1和FET2采用导通电阻很小的功率管。它们的选择原则除了导通电阻要小,还要求体积小,并且关闭时源漏击穿电压要能经受不匹配充电器的影响。从理论上说,FET1和FET2可以用N 管也可以用P 管。但由于单节锂离子电池保护电路的电源电压较低,为了减小导通电阻,一般都采用N管。图1中二极管是FET1和FET2的寄生二极管,它们的存在使系统在过放电状态下能对电池充电,在过充电状态下能对负载放电。
图1 3.6V 锂离子电池保护电路封装结构 锂离子电池保护芯片的应用场合要求其具有低电流驱动、高精度检测的特点,另外由于保护电路的供电电源即为电池电压,因此在电池电压的变化范围内,保护电路必须正常工作,本文根据图1 所示的连接关系,设计一种低功耗单节锂离子电池保护芯片,其电池电压可以在1V—5.5V范围内变化。
系统结构设计
锂离子电池保护芯片的基本功能是进行过充电保护、过放电保护和过电流保护,其中过电流保护包括充电过流保护和放电过流保护。下面以保护电路的基本功能为出发点,分析其系统的组成。
检测异常现象
锂离子电池保护电路为了实现其基本功能,首先需要检测异常现象。过充电和过放电检测是将电池电压进行分压(采样)后与基准电压比较实现的;而对于过流检测,保护芯片首先将充放电过程中的电流转化为在功率管FET1、FET2上的电压,然后通过VM与基准电压比较完成,放电过流检测的是正电压,充电过流检测的是负电压。
滤除干扰信号
通常在锂离子电池保护电路的工作过程中会有干扰信号存在,干扰信号的类型主要有两种:一种为瞬间干扰,它是指在正常的信号上,在极短的时间内叠加上一个较大的信号。另一种为波动干扰,它是指信号的起伏波动。如图2 以充电过程解释了这两类干扰,其中VCU 为过充电检测电压。
为了防止干扰信号的引入使保护电路产生误动作,可以从系统角度考虑采用适当的措施减小它们的影响。
瞬间干扰可以在保护电路内部加上延时电路加以滤除,即当保护电路检测到异常信号后,延时一段时间再关闭FET1或FET2。根据过充电、过放电、过电流对锂电池的危害程度选取不同的延时时间。为了更加合理的保护锂电池,放电过流可分为三个级别,分别为过流1保护、过流2保护以及负载短路保护,过流1的延时稍长,过流2的延时比过流1的延时短一些,而负载短路不加延时立即保护。波动干扰可以在保护电路内部加上迟滞电路加以滤除。
控制充电控制管有效关闭
在充电过程中,与FET2源极相连的VM端电位为负值,当过充电保护起作用时,必须在过充电延时信号与CO端之间加上电平转换电路,将控制逻辑电路产生的逻辑信号进行转换,使CO端的电位小于或等于VM端的电位,从而保证FET2有效关断。
0V电池充电抑制功能
锂离子电池保护电路可实现对0V电池进行充电,也可实现对0V 电池禁止充电,本文的设计采用后者,这一功能使保护电路禁止对内部短路的电池进行充电。当电池电压为0V电池充电抑制电压VOINH(典型值为1V左右)或更低时,FET2的栅极电位被固定为VM 的电位,从而禁止充电。当电池电压等于或高于VOINH 时,可以进行充电。
其它功能
1)在过充电状态下,保护电路需禁止放电过流保护起作用。因为电池在过充电后接上负载的情况下,在放电初期,系统仍处于过充电状态,此时放电电流必然很大,引起过流的可能性很大;而过流保护如果起作用,就会关断放电回路。这样,一旦电池过充电,就可能永远不能使用;
2)在过放电保护起作用时,保护电路需禁止充电过流保护起作用。因为当电池过放电后,刚接上充电器充电时,充电电流会很大。此时禁止充电过流保护起作用,可保证电池在过放电后可充电;
3)为了减少充电电流流过FET1内部寄生二极管的时间,如果在过放电状态下连接上充电器并且VM电压低于充电过流检测电压时,解除过放电迟滞。
|
|