MSP430 G2553 Launchpad实现电容测量
[复制链接]
一、基本原理对于Source-Free RC电路,其电容放电的特性可以描述为: 其中V0是电容的初始电压,t是放电时间,R是串接的电阻阻值,C是电容值,v(t)是t时刻电容上的电压。因此,若已知V0、R、以及t1时刻的电压Vt1,便可求得C: 二、如何控制和测量如上图所示,大致步骤为:1)由GPIO通过电阻R给电容C充电至Vcc;2)该GPIO输出0,电容C通过R进行放电,同时Timer开始计时、CA+开启;3)当电容电压放电至参考电压(此处是0.25Vcc)时,比较器CA+输出端出现电平变化;4)中断程序捕获这一变化,并利用Timer的capture mode获得该时刻的时间,最后通过以上方程计算电容值。 上图中R推荐采用1%精度的电阻,以提高测试精度。
测试代码 main.c程序:
复制代码 1 // C meter 2015.9.26 2 // 3 // P1.5(TA0.0) --[||||]----------- P1.4(CA3) 4 // R=10kOhm | 5 // ----- 6 // cap ----- 7 // | 8 // GND 9 // 10 ///////////////////////////////////////// 11 12 #include "io430.h" 13 14 #define LED1 BIT0 // P1.0, red led 15 #define LED2 BIT6 // P1.6, green led 16 17 #define VMEAS BIT4 // P1.4(CA4) for voltage measurement of the cap 18 #define VCTRL BIT5 // P1.5(TA0.0) for voltage control 19 #define PUSH2 BIT3 // P1.3, button 20 21 #define RXD BIT1 //P1.1 22 #define TXD BIT2 //P1.2 23 24 #define READY 0 25 #define CHARGING 1 26 #define DISCHARGING 2 27 #define FINISH_DC 3 28 29 #define R_SERIES 10000 //10kOhm 30 #define LN4 1.3863 31 32 //functions for C meter 33 void P1Init(void); 34 void TA0Init(void); 35 void CAInit(void); 36 37 void setReadyStatus(void); 38 39 //functions for printf() 40 void sendByte(unsigned char); 41 void printf(char *, ...); 42 void initUART(void); 43 44 char state = READY; 45 unsigned char overflowsCharging = 0; 46 unsigned char overflowsDischarging = 0; 47 unsigned char i = 0; 48 float capacitance = 0; // unit: nF 49 50 void main(void) 51 { 52 // Stop watchdog timer to prevent time out reset 53 WDTCTL = WDTPW + WDTHOLD; 54 55 // DCO setup 56 BCSCTL1 = CALBC1_1MHZ; //running at 1Mhz 57 DCOCTL = CALDCO_1MHZ; 58 59 // P1 setup 60 P1Init(); 61 62 // Timer0 setup 63 TA0Init(); 64 65 // CA setup 66 CAInit(); 67 68 // UART setup 69 initUART(); 70 71 setReadyStatus(); 72 73 __enable_interrupt(); 74 75 // enter LP mode 76 LPM0; 77 78 } 79 80 81 void P1Init(void) 82 { 83 P1OUT = 0; 84 85 // set P1.3 (PUSH2) as input with pullup 86 P1OUT |= PUSH2; 87 P1REN |= PUSH2; 88 89 // set P1.0, P1.6, P1.5 as output 90 P1DIR |= LED1 + LED2 + VCTRL; 91 92 // enable P1.3 interrupt 93 P1IES |= PUSH2; // high -> low transition 94 P1IFG &= ~PUSH2; // clear the flag 95 P1IE |= PUSH2; 96 } 97 98 void TA0Init(void) 99 { 100 // use SMCLK (1MHz), no div, clear, halt 101 TA0CTL = TASSEL_2 + ID_0 + MC_0 + TACLR; 102 103 // TA0CCTL0: compare mode, enable interrupt 104 TA0CCTL0 = CCIE; 105 106 // TA0CCTL1: capture mode, no capture, CCI1B(CAOUT) input, syn capture 107 // interrupt enabled 108 TA0CCTL1 = CCIS_1 + SCS + CAP + CCIE; 109 } 110 111 void CAInit(void) 112 { 113 //0.25 Vcc ref on V+, halt 114 CACTL1 = CAREF_1 + CAIES; 115 // input CA4 (P1.4), remove the jumper) on V-, filter on 116 CACTL2 = P2CA3 + CAF; 117 } 118 119 void setReadyStatus(void) 120 { 121 state = READY; 122 // light led2 and turn off led1 to indicate ready 123 P1OUT &= ~LED1; 124 P1OUT |= LED2; 125 126 //stop and clear timer, stop T0_A1 capture & CA+ 127 TA0CTL = TASSEL_2 + ID_0 + MC_0 + TACLR; 128 TA0CCTL1 &= ~CM_3; 129 CACTL1 &= ~CAON; 130 131 overflowsCharging = 0; 132 } 133 134 void initUART(void) { 135 //config P1.1 RXD, P1.2 TXD 136 P1SEL |= TXD + RXD; 137 P1SEL2 |= TXD + RXD; 138 139 //reset UCA0, to be configured 140 UCA0CTL1 = UCSWRST; 141 //config 142 UCA0CTL1 |= UCSSEL_2; //SMCLK 143 UCA0BR0 = 104; 144 UCA0BR1 = 0;//1MHz baut rate = 9600 8-N-1 145 UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1 146 //make UCA0 out of reset 147 UCA0CTL1 &= ~UCSWRST; 148 } 149 150 151 void sendByte(unsigned char byte ) 152 { 153 while (!(IFG2&UCA0TXIFG)); // USCI_A0 TX buffer ready? 154 UCA0TXBUF = byte; // TX -> RXed character 155 } 156 157 #pragma vector = PORT1_VECTOR 158 __interrupt void P1_ISR(void) 159 { 160 if((P1IFG & PUSH2) == PUSH2) 161 { 162 P1IFG &= ~PUSH2; //clear the flag 163 switch(state) 164 { 165 case READY: 166 state = CHARGING; 167 // light LED1 and turn off LED2, indicate a busy status 168 P1OUT |= LED1; 169 P1OUT &= ~LED2; 170 //start timer, continuous mode 171 TACTL |= MC_2; 172 //start charging 173 P1OUT |= VCTRL; 174 break; 175 default: 176 break; 177 } 178 179 } 180 else 181 { 182 P1IFG = 0; 183 } 184 } 185 186 #pragma vector = TIMER0_A0_VECTOR 187 __interrupt void CCR0_ISR(void) 188 { 189 switch(state) 190 { 191 case CHARGING: 192 if (++overflowsCharging == 50) // wait 6.5535*50 = 3.28s 193 { 194 state = DISCHARGING; 195 CACTL1 |= CAON; // turn on CA+ 196 TA0CCTL1 |= CM_1; // start TA1 capture on rising edge 197 P1OUT &= ~VCTRL; // start discharging 198 overflowsDischarging = 0; 199 } 200 break; 201 case DISCHARGING: 202 overflowsDischarging++; 203 default: 204 break; 205 206 } 207 208 } 209 210 #pragma vector = TIMER0_A1_VECTOR 211 __interrupt void CCR1_ISR(void) 212 { 213 TA0CTL &= ~MC_3; //stop timer 214 TA0CCTL1 &= ~CCIFG; // clear flag 215 switch(state) 216 { 217 case DISCHARGING: 218 state = FINISH_DC; 219 capacitance = (overflowsDischarging*65536 + TA0CCR1)*1000 / (R_SERIES*LN4); //nF 220 //send result to PC 221 printf("Capatitance: %n", (long unsigned)capacitance); 222 printf(" nF\r\n"); 223 224 setReadyStatus(); 225 break; 226 default: 227 break; 228 } 229 } 复制代码
|