片机一般都有内部ROM/EEPROM/FLASH供用户存放程序。为了防止未经授权访问或拷贝 单片机 的机内程序,大部分单片机都带有加密锁定位或者加密字节,以保护片内程序。如果在编程时加密锁定位被使能(锁定),就无法用普通编程器直接读取单片机内的程序,这就是所谓拷贝保护或者说锁定功能。
事实上,这样的保护措施很脆弱,很容易被破解。单片机攻击者借助专用设备或者自制设备,利用单片机芯片设计上的漏洞或软件缺陷,通过多种技术手段,就可以从芯片中提取关键信息,获取单片机内程序。
因此,作为 电子 产品的设计工程师非常有必要了解当前单片机攻击的最新技术,做到知己知彼,心中有数,才能有效防止自己花费大量金钱和时间辛辛苦苦设计出来的产品被人家一夜之间仿冒的事情发生。
单片机攻击技术
目前,攻击单片机主要有四种技术,分别是:
1软件攻击
该技术通常使用处理器通信接口并利用协议、加密算法或这些算法中的安全漏洞来进行攻击。软件攻击取得成功的一个典型事例是对早期ATMELAT89C 系列单片机的攻击。攻击者利用了该系列单片机擦除操作时序设计上的漏洞,使用自编程序在擦除加密锁定位后,停止下一步擦除片内程序存储器数据的操作,从而使加过密的单片机变成没加密的单片机,然后利用编程器读出片内程序。
2电子探测攻击
该技术通常以高时间分辨率来监控处理器在正常操作时所有电源和接口连接的模拟特性,并通过监控它的电磁辐射特性来实施攻击。因为单片机是一个活动的电子器件,当它执行不同的指令时,对应的电源功率消耗也相应变化。这样通过使用特殊的电子测量仪器和数学统计方法分析和检测这些变化,即可获取单片机中的特定关键信息。
3过错产生技术
该技术使用异常工作条件来使处理器出错,然后提供额外的访问来进行攻击。使用最广泛的过错产生攻击手段包括 电压 冲击和时钟冲击。低电压和高电压攻击可用来禁止保护 电路 工作或强制处理器执行错误操作。时钟瞬态跳变也许会复位保护电路而不会破坏受保护信息。电源和时钟瞬态跳变可以在某些处理器中影响单条指令的解码和执行。
4探针技术
该技术是直接暴露芯片内部连线,然后观察、操控、干扰单片机以达到攻击目的。为了方便起见,人们将以上四种攻击技术分成两类,一类是侵入型攻击(物理攻击),这类攻击需要破坏封装,然后借助 半导体 测试设备、显微镜和微定位器,在专门的实验室花上几小时甚至几周时间才能完成。所有的微探针技术都属于侵入型攻击。另外三种方法属于非侵入型攻击,被攻击的单片机不会被物理损坏。在某些场合非侵入型攻击是特别危险的,这是因为非侵入型攻击所需设备通常可以自制和升级,因此非常廉价。
大部分非侵入型攻击需要攻击者具备良好的处理器知识和软件知识。与之相反,侵入型的探针攻击则不需要太多的初始知识,而且通常可用一整套相似的技术对付宽范围的产品。因此,对单片机的攻击往往从侵入型的反向工程开始,积累的经验有助于开发更加廉价和快速的非侵入型攻击技术。
侵入型攻击的一般过程
侵入型攻击的第一步是揭去芯片封装。有两种方法可以达到这一目的:第一种是完全溶解掉芯片封装,暴露金属连线。第二种是只移掉硅核上面的塑料封装。第一种方法需要将芯片绑定到测试夹具上,借助绑定台来操作。第二种方法除了需要具备攻击者一定的知识和必要的技能外,还需要个人的智慧和耐心,但操作起来相对比较方便。芯片上面的塑料可以用小刀揭开,芯片周围的环氧树脂可以用浓硝酸腐蚀掉。热的浓硝酸会溶解掉芯片封装而不会影响芯片及连线。该过程一般在非常干燥的条件下进行,因为水的存在可能会侵蚀已暴露的铝线连接。接着在超声池里先用丙酮清洗该芯片以除去残余硝酸,然后用清水清洗以除去盐分并干燥。
没有超声池,一般就跳过这一步。这种情况下,芯片表面会有点脏,但是不太影响紫外光对芯片的操作效果。最后一步是寻找保护熔丝的位置并将保护熔丝暴露在紫外光下。一般用一台放大倍数至少100倍的显微镜,从编程电压输入脚的连线跟踪进去,来寻找保护熔丝。若没有显微镜,则采用将芯片的不同部分暴露到紫外光下并观察结果的方式进行简单的搜索。操作时应用不透明的纸片覆盖芯片以保护程序存储器不被紫外光擦除。将保护熔丝暴露在紫外光下5~10分钟就能破坏掉保护位的保护作用,之后,使用简单的编程器就可直接读出程序存储器的内容。
对于使用了防护层来保护EEPROM单元的单片机来说,使用紫外光复位保护电路是不可行的。对于这种类型的单片机,一般使用微探针技术来读取存储器内容。在芯片封装打开后,将芯片置于显微镜下就能够很容易的找到从存储器连到电路其它部分的数据 总线 。
由于某种原因,芯片锁定位在编程模式下并不锁定对存储器的访问。利用这一缺陷将探针放在数据线的上面就能读到所有想要的数据。在编程模式下,重启读过程并连接探针到另外的数据线上就可以读出程序和数据存储器中的所有信息。
还有一种可能的攻击手段是借助显微镜和激光切割机等设备来寻找保护熔丝,从而寻查和这部分电路相联系的所有信号线。由于设计有缺陷,因此,只要切断从保护熔丝到其它电路的某一根信号线,就能禁止整个保护功能。由于某种原因,这根线离其它的线非常远,所以使用激光切割机完全可以切断这根线而不影响临近线。这样,使用简单的编程器就能直接读出程序存储器的内容。
虽然大多数普通单片机都具有熔丝烧断保护单片机内代码的功能,但由于通用低档的单片机并非定位于制作安全类产品,因此,它们往往没有提供有针对性的防范措施且安全级别较低。加上单片机应用场合广泛,销售量大,厂商间委托加工与技术转让频繁,大量技术资料外泻,使得利用该类芯片的设计漏洞和厂商的测试接口,并通过修改熔丝保护位等侵入型攻击或非侵入型攻击手段来读取单片机的内部程序变得比较容易。
应对单片机破解的几点建议
任何一款单片机,从理论上讲,攻击者均可利用足够的投资和时间使用以上方法来攻破。所以,在用单片机做加密认证或设计系统时,应尽量加大攻击者的攻击成本和所耗费的时间。这是系统设计者应该始终牢记的基本原则。除此之外,还应注意以下几点:
(1)在选定加密芯片前,要充分调研,了解单片机破解技术的新进展,包括哪些单片机是已经确认可以破解的。尽量不选用已可破解或同系列、同型号的芯片。
(2)尽量不要选用MCS51系列单片机,因为该单片机在国内的普及程度最高,被研究得也最透。
(3)产品的原创者,一般具有产量大的特点,所以可选用比较生僻、偏冷门的单片机来加大仿冒者采购的难度。
(4)选择采用新工艺、新结构、上市时间较短的单片机,如ATMEL AVR 系列单片机等。
(5)在设计成本许可的条件下,应选用具有硬件自毁功能的智能卡芯片,以有效对付物理攻击。
(6)如果条件许可,可采用两片不同型号单片机互为备份,相互验证,从而增加破解成本。
(7)打磨掉芯片型号等信息或者重新印上其它的型号,以假乱真。当然,要想从根本上防止单片机被解密,程序被盗版等侵权行为发生,只能依靠法律手段来保障。
然后谈一下单片机硬件抗干扰常用方法
影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。
形成干扰的基本要素有三个:
(1)干扰源。指产生干扰的元件、设备或信号。如:雷电、 继电器 、 可控硅 、电机、高频时钟等都可能成为干扰源。
(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件。指容易被干扰的对象。如:A/D、 D/A变换器,单片机,数字IC,弱信号 放大器 等。
干扰的耦合方式
(1)直接耦合:
这是最直接的方式,也是系统中存在最普遍的一种方式。比如干扰信号通过电源线侵入系统。对于这种形式,最有效的方法就是加入去耦电路。
(2)公共阻抗耦合:
这也是常见的耦合方式,这种形式常常发生在两个电路 电流 有共同通路的情况。为了防止这种耦合,通常在电路设计上就要考虑。使干扰源和被干扰对象间没有公共阻抗。
(3) 电容 耦合:
又称电场耦合或静电耦合。是由于分布电容的存在而产生的耦合。
(4)电磁感应耦合:
又称磁场耦合。是由于分布电磁感应而产生的耦合。
(5)漏电耦合:
这种耦合是纯 电阻 性的,在绝缘不好时就会发生。
常用硬件抗干扰技术
针对形成干扰的三要素,采取的抗干扰主要有以下手段。
抑制干扰源
抑制干扰源就是尽可能的减小干扰源的du/dt, di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。 减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联 电感 或电阻以及增加续流 二极管 来实现。
抑制干扰源的常用措施如下:
(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1 μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
切断干扰传播路径
按干扰的传播路径可分为传导干扰和辐射干扰两类。
所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加 滤波器 的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。
所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加屏蔽罩。
切断干扰传播路径的常用措施如下:
(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。
(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机、继电器)与敏感元件(如单片机)远离。
(5)用地线把数字区与模拟区隔离。数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则。
(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。
(7)在单片机I/O口、电源线、电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器、屏蔽罩,可显著提高电路的抗干扰性能。
提高敏感器件的抗干扰性能
提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。
提高敏感器件抗干扰性能的常用措施如下:
(1)布线时尽量减少回路环的面积,以降低感应噪声。
(2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。
(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。
(4)对单片机使用电源监控及 看门狗 电路,如: IMP809,IMP706,IMP813, X5043,X5045等,可大幅度提高整个电路的抗干扰性能。
(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。
(6)IC器件尽量直接焊在电路板上,少用IC座。
其它常用抗干扰措施
(1)交流端用电感电容滤波:去掉高频低频干扰脉冲。
(2) 变压器 双隔离措施:变压器初级输入端串接电容,初、次级线圈间屏蔽层与初级间电容中心接点接大地,次级外屏蔽层接印制板地,这是硬件抗干扰的关键手段。次级加 低通滤波器 :吸收变压器产生的浪涌电压。
(3)采用集成式直流 稳压电源 : 有过流、过压、过热等保护作用。
(4)I/O口采用光电、磁电、继电器隔离,同时去掉公共地。
(5)通讯线用双绞线:排除平行互感。
(6)防雷电用光纤隔离最为有效。
(7)A/D转换用隔离放大器或采用现场转换:减少误差。
(8)外壳接大地:解决人身安全及防外界电磁场干扰。
(9)加复位电压检测电路。防止复位不充分, CPU就工作,尤其有EEPROM的器件,复位不充份会改变EEPROM的内容。
(10)印制板工艺抗干扰:
① 电源线加粗,合理走线、接地,三总线分开以减少互感振荡。
② CPU、RAM、ROM等主芯片,VCC和GND之间接电解电容及瓷片电容,去掉高、低频干扰信号。
③ 独立系统结构,减少接插件与连线,提高可靠性,减少故障率。
④ 集成块与插座接触可靠,用双簧插座,最好集成块直接焊在印制板上,防止器件接触不良故障。
⑤ 有条件的采用四层以上印制板,中间两层为电源及地。
本文转自网络
深圳市菲利盟电子技术有限公司