由美国Microchip公司生产的PIC系列单片机,由于其超小型、低功耗、低成本、多品种等特点,已广泛应用于工业控制、仪器、仪表、通信、家电、玩具等领域,本文总结了作者在PIC单片机开发过程中的一些经验、技巧,供同行参考。 1 怎样进一步降低功耗 功耗,在电池供电的仪器仪表中是一个重要的考虑因素。PIC16C××系列单片机本身的功耗较低(在5V,4MHz振荡频率时工作电流小于2mA)。为进一步降低功耗,在保证满足工作要求的前提下,可采用降低工作频率的方法,工作频率的下降可大大降低功耗(如PIC16C××在3V,32kHz下工作,其电流可减小到15μA),但较低的工作频率可能导致部分子程序(如数学计算)需占用较多的时间。在这种情况下,当单片机的振荡方式采用RC电路形式时,可以采用中途提高工作频率的办法来解决。 | 具体做法是在闲置的一个I/O脚(如RB1)和OSC1管脚之间跨接一电阻(R1),如图1所示。低速状态置RB1=0。需进行快速运算时先置RB1=1,由于充电时,电容电压上升得快,工作频率增高,运算时间减少,运算结束又置RB1=0,进入低速、低功耗状态。工作频率的变化量依R1的阻值而定(注意R1不能选得太小,以防振荡电路不起振,一般选取大于5kΩ)。 另外,进一步降低功耗可充分利用“sleep”指令。执行“sleep”指令,机器处于睡眠状态,功耗为几个微安。程序不仅可在待命状态使用“sleep”指令来等待事件,也可在延时程序里使用(见例1、例2)。在延时程序中使用“sleep”指令降低功耗是一个方面,同时,即使是关中断状态,Port B端口电平的变化可唤醒“sleep”,提前结束延时程序。这一点在一些应用场合特别有用。同时注意在使用“sleep”时要处理好与WDT、中断的关系。 | 图1 提高工作频率的方法 | 例1(用Mplab-C编写) | | 例2(用Masm编写) | Delay() | | Delay | { | | ;此行可加开关中断指令 | /*此行可加开关中断指令*/ | | movlw.10 | for (i=0; i<=10; i++) | | movwf Counter | SLEEP(); | | Loop1 | } | | Sleep | | | decfsz Counter | | | goto Loop1 | | | return | 2 注意INTCON中的RBIF位 INTCON中的各中断允许位对中断状态位并无影响。当PORT B配置成输入方式时,RB<7:4>引脚输入在每个读操作周期被抽样并与旧的锁存值比较,一旦不同就产生一个高电平,置RBIF=1。在开RB中断前,也许RBIF已置“1”,所以在开RB中断时应先清RBIF位,以免受RBIF原值的影响,同时在中断处理完成后最好是清RBIF位。 3 用Mplab-C高级语言写PIC单片机程序时要注意的问题 3.1 程序中嵌入汇编指令时注意书写格式 见例3。 例3 …… | | …… | while(1) {#asm | | while(1) { | …… | | #asm /*应另起一行*/ | #endasm | | …… | }/*不能正确编译*/ | | #endasm | …… | | }/*编译通过*/ | | | …… | 当内嵌汇编指令时,从“#asm”到“endasm”每条指令都必须各占一行,否则编译时会出错。 3.2 加法、乘法的最安全的表示方法 见例4。 例4 | #include<16c71.h> | | #include<math.h> | | unsigned int a, b; | | unsigned long c; | | void main() | | { a=200; | | b=2; | | c=a*b; | | } /*得不到正确的结果c=400*/ | 原因是Mplab-C以8×8乘法方式来编译c=a*b,返回单字节结果给c,结果的溢出被忽略。改上例中的“c=a*b;”表达式为“c=a;c=c*b;”,最为安全(对加法的处理同上)。 3.3 了解乘除法函数对寄存器的占用 由于PIC片内RAM仅几十个字节,空间特别宝贵,而Mplab-C编译器对RAM地址具有不释放性,即一个变量使用的地址不能再分配给其它变量。如RAM空间不能满足太多变量的要求,一些变量只能由用户强制分配相同的RAM空间交替使用。而Mplab-C中的乘除法函数需借用RAM空间来存放中间结果,所以如果乘除法函数占用的RAM与用户变量的地址重叠时,就会导致出现不可预测的结果。如果C程序中用到乘除法运算,最好先通过程序机器码的反汇编代码(包含在生成的LST文件中)查看乘除法占用地址是否与其它变量地址有冲突,以免程序跑飞。Mplab-C手册并没有给出其乘除法函数对具体RAM地址的占用情况。例5是乘法函数对0×13、0×14、0×19、0×1A地址占用情况。 例5 | 部分反汇编代码 | #include <pic16c71> | 01A7 | 081F | MOVF 1F,W | #include<math.h> | 01A8 | 0093 | MOVWF 13 | | ;借用 | | | unsigned long Value @0x1 | 01A9 | 0820 | MOVF 20,W | char Xm @0x2d; | 01AA | 0094 | MOVWF 14 | | ;借用 | | | void main() | 01AB | 082D | MOVF 2D,W | {Value=20; | 01AC | 0099 | MOVWF 19 | | ;借用 | | | Xm=40; | 01AD | 019A | CLRF1A | | ;借用 | | | Value=Value*Xm | 01AE | 235F | CALL 035Fh | | ;调用乘法函数 | …… | 01AF | 1283 | BCF 03,5 | } | 01B0 | 009F | MOVWF 1F | | ;返回结果低字节 | | 01B1 | 0804 | MOVF 04,W | | 01B2 | 00A0 | MOVWF 20 | | ;返回结果高字节 | 4 对芯片重复编程 对无硬件仿真器的用户,总是选用带EPROM的芯片来调试程序。每更改一次程序,都是将原来的内容先擦除,再编程,其过程浪费了相当多的时间,又缩短了芯片的使用寿命。如果后一次编程的结果较前一次,仅是对应的机器码字节的相同位由“1”变成“0”,就可在前一次编程芯片上再次写入数据,而不必擦除原片内容。 在程序的调试过程中,经常遇到常数的调整,如常数的改变能保证对应位由“1”变“0”,都可在原片内容的基础继续编程。另外,由于指令“NOP”对应的机器码为“00”,调试过程中指令的删除,先用“NOP”指令替代,编译后也可在原片内容上继续编程。 另外,在对带EPROM的芯片编程时,特别注意程序保密状态位。厂家对新一代带EPROM芯片的保密状态位已由原来的EPROM可擦型改为了熔丝型,一旦程序代码保密熔丝编程为“0”,可重复编程的 EPROM 芯片就无法再次编程了。使用时应注意这点,以免造成不必要的浪费(Microchip 资料并未对此做出说明)。 参考文献 1 Micorchip PIC16Cxx Data Book 2 MPLAB-C USER’S GUIDE
|