3.设计 除CDD和RCS之外,所有器件值都与UCC28700EVM-068 5-W USB适配器[1]原理图一样。图3摘自UCC28700产品说明书[2]。IS可使用等式7计算,这里ηXFMR是估计的变压器效率。
变压器效率受铁芯及绕组损耗、漏感比以及偏置功率与额定输出功率之比的影响。以一个5V、1A的充电器为例,1.5%的偏置功率是良好的估算值[1]。90%的整体变压器效率是约略估计,其中包括3.5%的漏感、5%的铁芯损耗及绕组损耗以及1.5%的偏置功率[1]。
最大初级峰值电流IPP出现在启动开始的时候,随即UCC28700器件会进入恒流调节状态,保持0.425的恒定二次二极管导通占空比。
该变压器是EVM上的WE 750312723,NP/NS=15.33、NP/NA=3.83,饱和电流为440mA。
图3:变压器电流
(7)
在启动开始时,输出电容器的平均充电电流为正值,充电电流等于(IS-IL),如等式1所示。在VO上升至VOCC之前,辅助匝电压低于VDD,此时CDD无法通过辅助匝充电。但在此期间,CDD会被Irun和栅极驱动电流放电。如果 VDD低于VDD(off),UCC28700器件就会关断。为确保器件顺利启动,在ta内VDD必须大于VDD(off)。在等式8和等式9中,应用了一个临界条件。Tstart是VO从0上升至VOCC的时间。等式2是VOCC和VDD(off)的关系。在等式8 中,有1mA的估计栅极驱动电流,而且为VDD添加了1V的裕度。VCST是芯片选择阈值电压。在启动开始时,UCC28700 VS引脚上的电压为低,因此VCST保持其最大值。
(8)
(9)
(10)
如表1所示,UCC28700器件有更好的恒流(CC)调整性能,更高的最大工作频率,其可最大限度缩小解决方案尺寸。待机功耗不足30mW,符合五星评级要求。更高的最大VDD,可缩小VDD电容器值。在表1中突出显示的三种产品中,UCC28700器件是设计5V适配器的最佳选择。UCC28700器件可选择更高的NA/NS,因为根据等式2,它具有更高的最大VDD,可实现更短的tstart(见等式9)。在等式8中,tstart与CDD成正比,因此在设计中需要较小的CDD。
表 1:参数比较表
4.实验 为验证上述分析,我们使用了一款UCC28700EVM-068 5-W USB适配器。除了CDD和RCS外,所有器件值均保持不变,CDD=4.7μF、RCS=1.8Ω。负载为恒定电流1A。
图4是UCC28700的启动波形,CH1是MOSFET栅极驱动信号,CH3是输出电压。该器件启动顺畅,没有过冲和声频噪声。该图显示,UCC28700器件有非常好的启动性能。在图4中,tstart接近18ms,与计算结果吻合。
图4:UCC28700启动波形
图5、图6和图7是比较性实验。CH1是VDD电压,CH3是输出电压。
在图5中,CDD=4.7μF,RCS=2.05Ω:由于初级峰值电流不够大,VDD下降到VDD(off)之下,因此UCC28700器件无法启动。
在图6中,CDD=4.7μF,RCS=1.8Ω:初级峰值电流增大,因此能观察到良好的启动性能。
在图7中,CDD=4.7μF,RCS=2.05Ω:UCC28700器件无法启动,因为CDD的容量不足以提供足够的能量。
实验结果说明,大初级峰值电流和大容量CDD都能让UCC28700在恒流满负载下成功启动。这些结果印证了上述分析。
图5:CDD=4.7μF,RCS=2.05Ω时的UCC28700启动波形
图6:CDD=4.7μF,RCS=1.8Ω时的UCC28700启动波形
图7:CDD=1μF,RCS=1.8Ω时的UCC28700启动波形
5.结论 比较结果说明,UCC28700器件在CV及CC调节、解决方案尺寸、待机功耗和VDD电容器值方面具有更优异的特性。在本研究过程中,我们对初级峰值电流和VDD电容器进行了分析计算。随后根据等式选择了适当的参数,然后通过实验结果验证了该分析。
6.参考资料 [1]《UCC28700EVM-068 5-W USB适配器》。德州仪器用户指南,SLUU968,2012年7月。
[2]《支持一次侧稳压的恒压恒流控制器》。德州仪器 UCC2870x 产品说明书,SLUSB41,2012年7月。
|