本帖最后由 qwqwqw2088 于 2017-11-23 10:29 编辑
TL494管脚配置及其功能 TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
根据TL494的引脚功能,在设计电路前对TL494的特性要做一定的测试:
过对TL494芯片的占空比测试,可以进一步加深对TL494工作特点的理解,同时也发现占空比是在DTC=0~2.4v的范围内变化,不是一般中所说的在DTC=0~3.3v电压范围内变化。占空比随着DTC电压的升高而减小,正是利用TL494这种性质,我们实现了开机时的软启动功能,也是利用4脚电压的特点,将4脚作为过流保护的输入端。当发生过流保护的时候,滞环比较器的输出为高,远大于2.4V,可以很快的封锁占空比,实现过流保护的目的。 1.控制芯片TL494介绍 1)TL494框图:
2) TL494管脚配置及其功能 TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。 2.振荡频率的选择
图3 实际的工作频率为22.04k,根据
=18.03k,由于电阻电容本身的精度不够导致误差较大。 TL494的最大占空比能够达到96%,
图4
四.试验结果 1.TL494 测试波形 为进一步了解TL494的工作特点,对于TL494的占空比变化进行了一系列试验,用TL494与TLP250组成的实验电路进行试验,在下述波形中波形1 为输出占空比即TLP250的6脚输出占空比波形,2为TL494的11脚波形。 测得的波形如下: 1)在4脚电压为0时,3脚电压变化对输出占空比的影响。
图16 (3脚电压为0时)
图17(3脚电压为1.8V时)
图18(3脚电压为3.1V时)
图19 (3脚电压为3.5V) 2)3脚电压comp=1.5V时,占空比随4脚电压变化波形如下:
图20 (4脚电压为0时)
图21(4脚电压为1.5V)
图22 (4脚电压为2.2V时)
图23 (4脚电压为2.4V时) 通过对TL494芯片的占空比测试,可以进一步加深对TL494工作特点的理解,同时也发现占空比是在DTC=0~2.4v的范围内变化,不是一般中所说的在DTC=0~3.3v电压范围内变化。占空比随着DTC电压的升高而减小,正是利用TL494这种性质,我们实现了开机时的软启动功能,也是利用4脚电压的特点,将4脚作为过流保护的输入端。当发生过流保护的时候,滞环比较器的输出为高,远大于2.4V,可以很快的封锁占空比,实现过流保护的目的。
|