|
电源电路中功率MOS管的设计参数优化及器件选择
[复制链接]
电源通常后面带有较大的电容,可限制电容在充电过程中产生的浪涌电流,以保护后面所带的负载芯片的安全。因此,在这些不同电压的多路电源主回路中通常插入由功率MOS管分立元件组成的负载开关电路。电路中功率MOS管有很长一段时间工作于VGS转折电压以下的RDS(ON)为负温度系数的区域,因此要优化相关外围电路元件参数的选择。 1 封装及热阻的影响
AO4407A的封装为SO8,AOD413A封装为TO252。AOD413A的封装体积大,其热阻小,允许耗散的功率大。由于C1远大于两个元件的输入电容,C2远大于两个元件的米勒电容,因此在电路中,元件本身的输入电容和米勒电容可以忽略。如果外部的元件参数相同,在电路中用AO4407A和AOD413A,则两者基本上具有相同的米勒平台的时间。
为了对比AOD413A和AO4407A抗热冲击的能力,延长米勒平台的时间到2.5 s,即将R2的电阻增大到910 k?赘,C2电容增大到3.1 μF。在此条件下做对比实验,AO4407A的电路开关1~2次就损坏了,因AO4407A的热阻较高为40℃/W。而AOD413A的电路开关多次,仍然可以正常工作。因为AOD413A具有较低的热阻(25℃/W)和较大的耗散功率,因此,在较长的米勒平台的时间内产生的热量可以充分的消散,局部过热产生的热不平衡的影响减小。G极的串联电阻和米勒电容增加,除了米勒平台的时间增加,同时输入浪涌电流的峰值也大幅度降低,输入浪涌电流的峰值越小,对系统的冲击就越小。但带来的问题是功率MOS管的热损耗增加,也增大了损坏的可能性。
2 阈值电压的影响
通常对于功率MOS管,不同的阈值电压对应于不同的转折电压,阈值电压越低,转折电压也越低。选用AO4403和AO4407A作对比实验,均为SO8封装,阈值电压不同。输入电压为12 V,R2=100 kΩ,C2=1 μF,可以看到两者具有相同的2.7 A浪涌电流,AO4403的米勒平台时间约为124 ms,米勒平台电压为-1 V;AO4407A的米勒平台时间约为164 ms,米勒平台电压为-3.6 V。因此,同样的外部参数,由于AO4403具有低阈值电压,米勒平台时间短,使得开通过程中产生的损耗减小,从而减小了系统的热不平衡,提高了系统的可靠性。
输出的电容越大,浪涌电流也越大。为了达到同样限定的浪涌电流值,使用C1的电容值越大,浪涌电流越小,但消耗的功率增加,功率MOS管的温升也增加,使MOS管内部晶胞单元的热不平衡越大,也越容易损坏管子。
(1)功率MOS管导通电阻的温度系数对应的VGS有一个转折电压,在转折电压以下,为负温度系数,无法自动平衡均流;在转折电压以上,为正温度系数,可以自动平衡均流。
(2)功率MOS管在开关的过程中要跨越正温度系数和负温度系数区,并在米勒平台处产生较大的开关损耗。
(3)负载开关电路通过增加米勒电容或输入电容延长米勒平台时间来抑止浪涌电流,电容值越大、浪涌电流越小、开关损耗越大。由于米勒平台处为负温度系数,因此也越容易形成局部的热点损坏。
(4)减小输出电容,提高功率MOS管的散热能力(更大的封装),选用低阈值电压,可以提高系统的可靠性。
|
|