[技术]红外测温在高压电缆监测中的应用
1 前言
110kV及以上电压等级的电缆在电网中的应用越来越广,在电力系统中已占有重要的位置,其中作为电缆系统重要组成部分的高压电缆瓷套终端采用瓷套外绝缘及绝缘填充油内绝缘,以其悠久的历史,良好的运行记录在世界各地被普遍接受并大量使用。
厦门电业局现有110kV及以上电压等级的电缆共计30回,其中220kV电缆3回,110kV电缆27回。电缆的终端采用传统的瓷套终端有150套,GIS终端30套,瓷套终端占83.3%。电缆终端及中间接头是整个电缆系统的薄弱环节,是电缆故障的高发部位。瓷套终端由于其内绝缘不可见,如何对其进行有效的监测我们的经验还较少,手段单一,有必要对监测的方法进行探讨,寻求有效的监测方法。
2 电缆终端监测方法的探讨
传统的电缆终端绝缘监测主要是对填充油的监测,目前高压电缆瓷套终端内填充专用的绝缘油大约可分两类,一类为硅油,一类为液体聚异丁烯。根据《电力设备预防性试验规程》(DL/T596-1996)的规定,对电缆及附件内的电缆油的监测应作击穿电压、介质损耗及油中溶解气体分析的试验。但这几种试验都是要在实验室内完成,所以必须现场取到运行电缆终端的填充油样后送到实验室进行测试,都必须取得油样后才能进行监测。
瓷套终端的结构有两大类,一类是终端尾锥有取油孔的,一类是没有的。对于前者可以在带电的情况下进行取油样,但油样取了多次后终端的填充油会减少,也必须停电进行终端的补油,对于后者由于其没有尾锥取油孔,因此要取油样就必须在停电的情况下从终端上部抽取。传统的监测方法都是要按照规程的规定,按照预防性试验周期每年对送电电缆线路进行停电预试,取油样也往往结合线路年检时进行,取得油样后及时送到绝缘监督部门进行油的相关试验。我们从80年代末具有送电电缆开始就一直按照传统的方法进行终端的监视,期间我们发现27组110kV电缆终端有不同程度的受潮而使其绝缘电阻降低,其中有两回路的电缆终端在对其终端尾锥进行漏油时,终端底部已汇集约300毫升的水,油样试验后发现其有受潮,但规程只是对油中的溶解气体含量有规定的注意值,而对水的含量则没有标准,因而没有采取有针对性的措施,只是不定期对进水严重的电缆终端进行换油处理,造成多次的停电,既费时又影响电网的可靠性,还不能达到真正监测的效果。因为这些工作要在年检的时候进行,而两次的年检相隔时间很长,往往还没有发现问题就发生事故。 2002年9月3日东渡变东禾Ⅱ回174 C相开关侧电缆头绝缘击穿爆炸也是在每年的年检合格的情况下发生的事故。
传统的监测方法存在不足,那么如何对瓷套终端进行有效、实时的带电监测?我们在对东渡变东禾Ⅱ回174 C相开关侧电缆头绝缘击穿爆炸事故分析中发现其故障的部位是在终端应力锥的上端部位,而且是由于长期放电造成的事故,若能在此之前监测到终端内部存在放电现象就能发现问题,而放电就必然存在温度的差别,因而转变了监测的观念,把监测的重点转变到终端的温度监测项目上来,探讨采用红外热像仪对终端进行带电的监测。
3 红外测温的应用
红外测温在电力系统的其他专业监测中起步较早,2000年我局就颁布《厦门电业局红外监测和诊断工作管理规定(暂行)》对红外工作进行相关的规范管理,测试的对象主要是有电流、电压致热的设备,但多年来对于电缆设备的监测,往往只注重接点温度的监视,而没有对整个电缆终端进行测试。
对电缆终端的监测的尝试工作我们从2003年才开始,采用的是FLIR525型的红外热像仪,2003年共进行四次的测试,两次共发现三相电缆终端存在重大的缺陷均进行处理,避免重大事故的发生。
技术参考文献详细技术资料请浏览:仪器仪表世界网www.1718world.com,如需转载请注明出处:仪器仪表世界网www.1718world.com,本文为原创技术资料。
|