387|4

365

帖子

0

TA的资源

版主

楼主
 

一起读《动手学深度学习(PyTorch版)》- 多层感知机 - Tanh、RELU训练对比 [复制链接]

 

使用RELU激活函数

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
import matplotlib.pyplot as plt
from torch import nn 

def get_dataloader_workers():
    return 6

def load_data_fashion_mnist(batch_size, resize=None):
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root="./data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="./data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))

def accurancy(y_hat, y):
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

class Accumulator:
    def __init__(self, n) -> None:
        self.data = [0.0]*n
    
    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

def evaluate_accurancy(net, data_iter):
    if isinstance(net, torch.nn.Module):
        net.eval()
    metric = Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accurancy(net(X), y), y.numel())
    return metric[0] / metric[1]

def train_epoch_ch3(net, train_iter, loss, updater):
    if isinstance(net, torch.nn.Module):
        net.train()
    metric = Accumulator(3)
    for X, y in train_iter:
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accurancy(y_hat, y), y.numel())
    return metric[0] / metric[1], metric[1] / metric[2]

def set_axes(axes, xlable, ylable, xlim, ylim, xscale, yscale, legend):
    axes.set_xlabel(xlable)
    axes.set_ylabel(ylable)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
        axes.grid()

class Animator:
    def __init__(self, xlable=None, ylable=None, legend=None, xlim=None, ylim=None, 
    xscale='linear', yscale='linear',fmts=('-','m--','g-.','r:'), nrows=1, ncols=1, figsize=(3.5, 2.5)):
        if legend is None:
            legend = []
        self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        self.config_axes = lambda: set_axes(self.axes[0], xlable, ylable, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts
    
    def add(self, x, y):
        if not hasattr(y, "__len__"):
            y=[y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a,b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    animator = Animator(xlable='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9], legend=['train loss', "train acc", "test acc"])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accurancy(net, test_iter)
        animator.add(epoch+1, train_metrics+(test_acc, ))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc < 1 and train_acc > 0.7, train_acc
    assert test_acc < 1 and test_acc > 0.7, test_acc

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights)

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = load_data_fashion_mnist(batch_size)
train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

plt.show()

训练结果

 

更换激活函数为Tanh

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.Tanh(),
                    nn.Linear(256, 10))

 

 

最新回复

学习了,内容非常清晰,非常感谢楼主的分享。好文,有需要的可以看看。   详情 回复 发表于 2024-10-26 22:30
点赞 关注
 
 

回复
举报

6828

帖子

0

TA的资源

五彩晶圆(高级)

沙发
 

 多层感知机 - Tanh、RELU训练对比核心也是算法

点评

是的啊  详情 回复 发表于 2024-10-27 13:15
 
 
 

回复

23

帖子

0

TA的资源

禁止发言

板凳
 

学习了,内容非常清晰,非常感谢楼主的分享。好文,有需要的可以看看。

点评

感谢  详情 回复 发表于 2024-10-27 13:15
 
 
 

回复

365

帖子

0

TA的资源

版主

4
 
Jacktang 发表于 2024-10-26 14:22  多层感知机 - Tanh、RELU训练对比核心也是算法

是的啊

 
 
 

回复

365

帖子

0

TA的资源

版主

5
 
zgnasd1950 发表于 2024-10-26 22:30 学习了,内容非常清晰,非常感谢楼主的分享。好文,有需要的可以看看。

感谢

 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/7 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表