上次我们通过开发板进行了摄像头测试,关键我们只能通过仿真然后进内存中查看里面的图像数据,还有点掉帧,所以我们结合我们的屏幕进行测试直接显示到LCD上。
我们在摄像头的基础上增加我们的RGB LCD的配置。之前都是现成的所以拿来用下即可。
把关键的引脚初始化好,相关的配置设置好。即可。
我们都知道摄像头的数据都是存储在内存中的,所以我们去找相关内存数据给其刷新到LCD上即可。
也就是我自己定义的一个函数,主要是按照图片大小来进行刷新。
关键的是我们要给其数组进行拼接,因为RGB565是16位的数据为一个颜色。
#include "hal_data.h"
#include "ceu.h"
#include "ov5640.h"
#include "board_sdram.h"
#include "glcdc_ep.h"
FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER
extern uint32_t g_image_width;
extern uint32_t g_image_height;
extern uint8_t * gp_image_buffer;
extern sensor_reg_t const * gp_ov5640_resolution;
extern capture_instance_t const * gp_ceu_instance;
/* Variables to store resolution information */
uint16_t g_hz_size, g_vr_size;
/* Variables used for buffer usage */
uint32_t g_buffer_size;
uint8_t * g_p_single_buffer, * g_p_double_buffer;
#define RESET_VALUE (0x00)
static void screen_display(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2, uint32_t color);
static void color_band_display(void);
static void show_img_display(void);
/*******************************************************************************************************************//**
* main() is generated by the RA Configuration editor and is used to generate threads if an RTOS is used. This function
* is called by main() when no RTOS is used.
**********************************************************************************************************************/
void hal_entry(void)
{
/* TODO: add your own code here */
// fsp_pack_version_t version = {RESET_VALUE};
fsp_err_t err = FSP_SUCCESS;
/* Initialize SDRAM */
bsp_sdram_init();
/* Initialize GPT module */
// err = R_GPT_Open(&g_timer_periodic_ctrl, &g_timer_periodic_cfg);
// handle_error(err, " ** R_GPT_Open API FAILED ** \r\n");
/* Start GPT module to provide the 24MHz clock frequency output for the camera clock source */
// err = R_GPT_Start(&g_timer_periodic_ctrl);
// handle_error(err, " ** R_GPT_Start API FAILED ** \r\n");
/* Initialize IIC module */
err = R_SCI_B_I2C_Open(&g_sci_i2c_master_for_ov5640_ctrl, &g_sci_i2c_master_for_ov5640_cfg);
// handle_error(err, " ** R_IIC_MASTER_Open API FAILED ** \r\n");
/* Initialize OV3640 sensor with output format as YUV422 */
err = ov5640_open();
// handle_error(err, " ** ov3640_open FAILED ** \r\n");
/* Get LCDC configuration */
g_hz_size = (g_display_cfg.input[0].hsize);
g_vr_size = (g_display_cfg.input[0].vsize);
/* Initialize buffer pointers */
g_buffer_size = (uint32_t) (g_hz_size * g_vr_size * BYTES_PER_PIXEL);
g_p_single_buffer = (uint8_t *) g_display_cfg.input[0].p_base;
/* Double buffer for drawing color bands with good quality */
g_p_double_buffer = g_p_single_buffer + g_buffer_size;
/* Initialize GLCDC driver */
err = R_GLCDC_Open(&g_display_ctrl, &g_display_cfg);
/* Handle error */
// if(FSP_SUCCESS != err)
// {
// /* GLCDC initialization failed */
// APP_ERR_PRINT("\r\n ** GLCDC driver initialization FAILED ** \r\n");
// APP_ERR_TRAP(err);
// }
/* Start GLCDC display output */
err = R_GLCDC_Start(&g_display_ctrl);
/* Handle error */
// if(FSP_SUCCESS != err)
// {
// /* GLCDC initialization failed */
// APP_ERR_PRINT("\r\n ** GLCDC driver start FAILED ** \r\n");
// APP_ERR_TRAP(err);
// }
/* Clear LCD screen using appropriate co-ordinates */
screen_display((uint16_t)X1_CO_ORDINATE, (uint16_t)Y1_CO_ORDINATE, g_hz_size, g_vr_size, YELLOW);
/* Display color bands on LCD screen */
// color_band_display();
/* Main loop */
while(true)
{
/* User selects type of memory to store image and resolution of image */
selection_menu();
/* Set camera resolution specified by ov3640 array pointer */
err = ov5640_set_resolution(gp_ov5640_resolution);
// handle_error(err, " ** ov3640_set_resolution FAILED ** \r\n");
/* Perform CEU operation specified by ceu instance pointer and store image in buffer specified by image buffer pointer */
err = ceu_operation(gp_ceu_instance, gp_image_buffer, g_image_width, g_image_height);
show_img_display();
// screen_display((uint16_t)X1_CO_ORDINATE, (uint16_t)Y1_CO_ORDINATE, g_hz_size, g_vr_size, &gp_image_buffer);
// handle_error(err, " ** ceu_operation FAILED ** \r\n");
}
#if BSP_TZ_SECURE_BUILD
/* Enter non-secure code */
R_BSP_NonSecureEnter();
#endif
}
/*******************************************************************************************************************//**
* This function is called at various points during the startup process. This implementation uses the event that is
* called right before main() to set up the pins.
*
* @param[in] event Where at in the start up process the code is currently at
**********************************************************************************************************************/
void R_BSP_WarmStart(bsp_warm_start_event_t event)
{
if (BSP_WARM_START_RESET == event)
{
#if BSP_FEATURE_FLASH_LP_VERSION != 0
/* Enable reading from data flash. */
R_FACI_LP->DFLCTL = 1U;
/* Would normally have to wait tDSTOP(6us) for data flash recovery. Placing the enable here, before clock and
* C runtime initialization, should negate the need for a delay since the initialization will typically take more than 6us. */
#endif
}
if (BSP_WARM_START_POST_C == event)
{
/* C runtime environment and system clocks are setup. */
/* Configure pins. */
R_IOPORT_Open (&IOPORT_CFG_CTRL, &IOPORT_CFG_NAME);
#if BSP_CFG_SDRAM_ENABLED
/* Setup SDRAM and initialize it. Must configure pins first. */
R_BSP_SdramInit(true);
#endif
}
}
#if BSP_TZ_SECURE_BUILD
FSP_CPP_HEADER
BSP_CMSE_NONSECURE_ENTRY void template_nonsecure_callable ();
/* Trustzone Secure Projects require at least one nonsecure callable function in order to build (Remove this if it is not required to build). */
BSP_CMSE_NONSECURE_ENTRY void template_nonsecure_callable ()
{
}
FSP_CPP_FOOTER
#endif
static void screen_display(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2, uint32_t color)
{
/*Declare local variables */
uint16_t start_x, start_y, display_length, display_height;
uint32_t start_addr;
/* Assign co-ordinate values and calculate start address */
start_x = x1;
start_y = y1;
start_addr = (uint32_t)((start_x * BYTES_PER_PIXEL) + (start_y * g_hz_size* BYTES_PER_PIXEL));
/* Calculate display box length and height */
display_length = (uint16_t)((x2 - x1) * BYTES_PER_PIXEL);
display_height = (y2 - y1);
/* Display required color band */
for(uint16_t ver_value = Y1_CO_ORDINATE; ver_value < (display_height - INC_DEC_VALUE); ver_value++)
{
for(uint32_t hor_value = start_addr; hor_value < (start_addr + display_length); hor_value += BYTES_PER_PIXEL)
{
*(uint32_t *) (g_p_single_buffer + hor_value) = color;
*(uint32_t *) (g_p_double_buffer + hor_value) = color;
}
start_addr = (uint32_t)(start_addr + (g_hz_size * BYTES_PER_PIXEL));
}
}
static void color_band_display(void)
{
uint16_t color[COLOR_BAND_COUNT]= {RED, GREEN, BLUE, BLACK, WHITE, YELLOW, MAGENTA, CYAN};
uint16_t width = g_vr_size/COLOR_BAND_COUNT;
for (uint8_t display_count = RESET_VALUE; display_count < COLOR_BAND_COUNT; display_count++)
{
screen_display((uint16_t)X1_CO_ORDINATE, (display_count * width), g_hz_size, (uint16_t)(((display_count * width) + width) + INC_DEC_VALUE), color[display_count]);
}
}
static void show_img_display(void)
{
// uint16_t color[COLOR_BAND_COUNT]= {RED, GREEN, BLUE, BLACK, WHITE, YELLOW, MAGENTA, CYAN};
// uint16_t width = g_vr_size/COLOR_BAND_COUNT;
uint32_t gp_image_buffer_count = 0;
for (uint16_t y_count = 0; y_count < g_image_height; y_count++)
{
for (uint16_t x_count = 0; x_count < g_image_width; x_count++)
{
screen_display((uint16_t)x_count, (uint16_t)y_count , (uint16_t)x_count+1, (uint16_t)(y_count + 2), ((gp_image_buffer[gp_image_buffer_count+1])<<8|(gp_image_buffer[gp_image_buffer_count])));
gp_image_buffer_count = gp_image_buffer_count + 2;
}
}
}
这样显示出我们天花板的图像了,刷新还比较慢,后期应该可以通过其他方式给他加速。