【兆易GD32H759I-EVAL】--7.SDRAM读写
[复制链接]
本帖最后由 dirty 于 2024-5-22 21:46 编辑
本篇讲述对外部SDRAM的读写。
一.硬件原理
开发板板载一颗MT48LC16M16A2 SDRAM 芯片, 大小为 32MB, 具有较大的存储空间。SDRAM原理图及引脚定义如下:
图1:SDRAM原理图
二.代码准备
1.宏定义读写数据大小、读写地址
/* SDRAM */
#define BUFFER_SIZE ((uint32_t)0x0400)
#define WRITE_READ_ADDR ((uint32_t)0x0000)
2.引脚初始化,包括使能EXMC时钟及选择SDRAM。
/* enable EXMC clock */
rcu_periph_clock_enable(RCU_EXMC);
rcu_periph_clock_enable(RCU_GPIOA);
rcu_periph_clock_enable(RCU_GPIOC);
rcu_periph_clock_enable(RCU_GPIOD);
rcu_periph_clock_enable(RCU_GPIOE);
rcu_periph_clock_enable(RCU_GPIOF);
rcu_periph_clock_enable(RCU_GPIOG);
rcu_periph_clock_enable(RCU_GPIOH);
/* common GPIO configuration */
/* SDNE0(PC2),SDCKE0(PC3) pin configuration */
gpio_af_set(GPIOC, GPIO_AF_12, GPIO_PIN_2 | GPIO_PIN_3);
gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_2 | GPIO_PIN_3);
gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_85MHZ, GPIO_PIN_2 | GPIO_PIN_3);
/* D12(PC0) pin configuration */
gpio_af_set(GPIOC, GPIO_AF_1, GPIO_PIN_0);
gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_0);
gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_85MHZ, GPIO_PIN_0);
/* D2(PD0),D3(PD1),D13(PD8),D14(PD9),D15(PD10),D0(PD14),D1(PD15) pin configuration */
gpio_af_set(GPIOD, GPIO_AF_12, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_8 | GPIO_PIN_9 |
GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15);
gpio_mode_set(GPIOD, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_8 | GPIO_PIN_9 |
GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15);
gpio_output_options_set(GPIOD, GPIO_OTYPE_PP, GPIO_OSPEED_85MHZ, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_8 | GPIO_PIN_9 |
GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15);
/* NBL0(PE0),NBL1(PE1),D4(PE7),D5(PE8),D6(PE9),D7(PE10),D8(PE11),D9(PE12),D10(PE13),D11(PE14) pin configuration */
gpio_af_set(GPIOE, GPIO_AF_12, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7 | GPIO_PIN_8 |
GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 |
GPIO_PIN_14);
gpio_mode_set(GPIOE, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7 | GPIO_PIN_8 |
GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 |
GPIO_PIN_14);
gpio_output_options_set(GPIOE, GPIO_OTYPE_PP, GPIO_OSPEED_85MHZ, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7 | GPIO_PIN_8 |
GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 |
GPIO_PIN_14);
/* A0(PF0),A1(PF1),A2(PF2),A3(PF3),A4(PF4),A5(PF5),NRAS(PF11),A6(PF12),A7(PF13),A8(PF14),A9(PF15) pin configuration */
gpio_af_set(GPIOF, GPIO_AF_12, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 |
GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15);
gpio_mode_set(GPIOF, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 |
GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15);
gpio_output_options_set(GPIOF, GPIO_OTYPE_PP, GPIO_OSPEED_85MHZ, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 |
GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15);
/* A10(PG0),A11(PG1),A12(PG2),BA0/A14(PG4),BA1/A15(PG5),SDCLK(PG8),NCAS(PG15) pin configuration */
gpio_af_set(GPIOG, GPIO_AF_12, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_4 |
GPIO_PIN_5 | GPIO_PIN_8 | GPIO_PIN_15);
gpio_mode_set(GPIOG, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_4 |
GPIO_PIN_5 | GPIO_PIN_8 | GPIO_PIN_15);
gpio_output_options_set(GPIOG, GPIO_OTYPE_PP, GPIO_OSPEED_85MHZ, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_4 |
GPIO_PIN_5 | GPIO_PIN_8 | GPIO_PIN_15);
/* SDNWE(PH5) pin configuration */
gpio_af_set(GPIOH, GPIO_AF_12, GPIO_PIN_5);
gpio_mode_set(GPIOH, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_5);
gpio_output_options_set(GPIOH, GPIO_OTYPE_PP, GPIO_OSPEED_85MHZ, GPIO_PIN_5);
/* specify which SDRAM to read and write */
if(EXMC_SDRAM_DEVICE0 == sdram_device) {
bank_select = EXMC_SDRAM_DEVICE0_SELECT;
} else {
bank_select = EXMC_SDRAM_DEVICE1_SELECT;
}
3.配置SDRAM时序寄存器
/* step 1 : configure SDRAM timing registers --------------------------------*/
/* LMRD: 2 clock cycles */
sdram_timing_init_struct.load_mode_register_delay = 2;
/* XSRD: min = 67ns */
sdram_timing_init_struct.exit_selfrefresh_delay = 12;
/* RASD: min=42ns , max=120k (ns) */
sdram_timing_init_struct.row_address_select_delay = 8;
/* ARFD: min=60ns */
sdram_timing_init_struct.auto_refresh_delay = 11;
/* WRD: min=1 Clock cycles +6ns */
sdram_timing_init_struct.write_recovery_delay = 2;
/* RPD: min=18ns */
sdram_timing_init_struct.row_precharge_delay = 4;
/* RCD: min=18ns */
sdram_timing_init_struct.row_to_column_delay = 4;
4.配置SDRAM控制寄存器
/* step 2 : configure SDRAM control registers ---------------------------------*/
sdram_init_struct.sdram_device = sdram_device;
sdram_init_struct.column_address_width = EXMC_SDRAM_COW_ADDRESS_9;
sdram_init_struct.row_address_width = EXMC_SDRAM_ROW_ADDRESS_13;
sdram_init_struct.data_width = EXMC_SDRAM_DATABUS_WIDTH_16B;
sdram_init_struct.internal_bank_number = EXMC_SDRAM_4_INTER_BANK;
sdram_init_struct.cas_latency = EXMC_CAS_LATENCY_3_SDCLK;
sdram_init_struct.write_protection = DISABLE;
sdram_init_struct.sdclock_config = EXMC_SDCLK_PERIODS_3_CK_EXMC;
sdram_init_struct.burst_read_switch = ENABLE;
sdram_init_struct.pipeline_read_delay = EXMC_PIPELINE_DELAY_1_CK_EXMC;
sdram_init_struct.timing = &sdram_timing_init_struct;
/* EXMC SDRAM bank initialization */
exmc_sdram_init(&sdram_init_struct);
5.配置命令寄存器
/* step 3 : configure CKE high command---------------------------------------*/
sdram_command_init_struct.command = EXMC_SDRAM_CLOCK_ENABLE;
sdram_command_init_struct.bank_select = bank_select;
sdram_command_init_struct.auto_refresh_number = EXMC_SDRAM_AUTO_REFLESH_1_SDCLK;
sdram_command_init_struct.mode_register_content = 0;
/* wait until the SDRAM controller is ready */
while((exmc_flag_get(sdram_device, EXMC_SDRAM_FLAG_NREADY) != RESET) && (timeout > 0)) {
timeout--;
}
/* send the command */
exmc_sdram_command_config(&sdram_command_init_struct);
/* step 4 : insert 10ms delay----------------------------------------------*/
_delay(100);
/* step 5 : configure precharge all command----------------------------------*/
sdram_command_init_struct.command = EXMC_SDRAM_PRECHARGE_ALL;
sdram_command_init_struct.bank_select = bank_select;
sdram_command_init_struct.auto_refresh_number = EXMC_SDRAM_AUTO_REFLESH_1_SDCLK;
sdram_command_init_struct.mode_register_content = 0;
/* wait until the SDRAM controller is ready */
timeout = SDRAM_TIMEOUT;
while((exmc_flag_get(sdram_device, EXMC_SDRAM_FLAG_NREADY) != RESET) && (timeout > 0)) {
timeout--;
}
/* send the command */
exmc_sdram_command_config(&sdram_command_init_struct);
/* step 6 : configure Auto-Refresh command-----------------------------------*/
sdram_command_init_struct.command = EXMC_SDRAM_AUTO_REFRESH;
sdram_command_init_struct.bank_select = bank_select;
sdram_command_init_struct.auto_refresh_number = EXMC_SDRAM_AUTO_REFLESH_8_SDCLK;
sdram_command_init_struct.mode_register_content = 0;
/* wait until the SDRAM controller is ready */
timeout = SDRAM_TIMEOUT;
while((exmc_flag_get(sdram_device, EXMC_SDRAM_FLAG_NREADY) != RESET) && (timeout > 0)) {
timeout--;
}
/* send the command */
exmc_sdram_command_config(&sdram_command_init_struct);
/* step 7 : configure load mode register command-----------------------------*/
/* program mode register */
command_content = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |
SDRAM_MODEREG_CAS_LATENCY_3 |
SDRAM_MODEREG_OPERATING_MODE_STANDARD |
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
sdram_command_init_struct.command = EXMC_SDRAM_LOAD_MODE_REGISTER;
sdram_command_init_struct.bank_select = bank_select;
sdram_command_init_struct.auto_refresh_number = EXMC_SDRAM_AUTO_REFLESH_1_SDCLK;
sdram_command_init_struct.mode_register_content = command_content;
/* wait until the SDRAM controller is ready */
timeout = SDRAM_TIMEOUT;
while((exmc_flag_get(sdram_device, EXMC_SDRAM_FLAG_NREADY) != RESET) && (timeout > 0)) {
timeout--;
}
/* send the command */
exmc_sdram_command_config(&sdram_command_init_struct);
6.设置自动刷新寄存器,等待控制器准备好
/* step 8 : set the auto-refresh rate counter--------------------------------*/
/* 64ms, 8192-cycle refresh, 64ms/8192=7.81us */
/* SDCLK_Freq = SYS_Freq/2 */
/* (7.81 us * SDCLK_Freq) - 20 */
exmc_sdram_refresh_count_set(1542);
/* wait until the SDRAM controller is ready */
timeout = SDRAM_TIMEOUT;
while((exmc_flag_get(sdram_device, EXMC_SDRAM_FLAG_NREADY) != RESET) && (timeout > 0)) {
timeout--;
}
7.SDRAM写函数
void sdram_writebuffer_8(uint32_t sdram_device, uint8_t *pbuffer, uint32_t write_addr, uint32_t byte_count_to_write)
{
uint32_t temp_addr;
/* select the base address according to EXMC_Bank */
if(sdram_device == EXMC_SDRAM_DEVICE0) {
temp_addr = SDRAM_DEVICE0_ADDR;
} else {
temp_addr = SDRAM_DEVICE1_ADDR;
}
/* while there is data to write */
for(; byte_count_to_write != 0; byte_count_to_write--) {
/* transfer data to the memory */
*(uint8_t *)(temp_addr + write_addr) = *pbuffer++;
/* increment the address */
write_addr += 1;
}
}
8.SDRAM读函数
void sdram_readbuffer_8(uint32_t sdram_device, uint8_t *pbuffer, uint32_t read_addr, uint32_t byte_count_to_read)
{
uint32_t temp_addr;
/* select the base address according to EXMC_Bank */
if(sdram_device == EXMC_SDRAM_DEVICE0) {
temp_addr = SDRAM_DEVICE0_ADDR;
} else {
temp_addr = SDRAM_DEVICE1_ADDR;
}
/* while there is data to read */
for(; byte_count_to_read != 0; byte_count_to_read--) {
/* read a byte from the memory */
*pbuffer++ = *(uint8_t *)(temp_addr + read_addr);
/* increment the address */
read_addr += 1;
}
}
9.主函数实现SDRAM初始化及写入数据并读出,比较写入与读出是否一样,不同结果控制不同指示灯。
int main(void)
{
uint32_t i = 0;
/* enable the CPU cache */
cache_enable();
/* initialize LEDs */
gd_eval_led_init(LED1);
gd_eval_led_init(LED2);
/* configure systick clock */
systick_config();
/* configure the USART */
gd_eval_com_init(EVAL_COM);
/* configure the EXMC access mode */
exmc_synchronous_dynamic_ram_init(EXMC_SDRAM_DEVICE0);
printf("\r\nSDRAM initialized!");
delay_1ms(1000);
/* fill txbuffer */
fill_buffer(txbuffer, BUFFER_SIZE, 0x0000);
/* write data to SDRAM */
sdram_writebuffer_8(EXMC_SDRAM_DEVICE0, txbuffer, WRITE_READ_ADDR, BUFFER_SIZE);
printf("\r\nSDRAM write data completed!");
delay_1ms(1000);
/* read data from SDRAM */
sdram_readbuffer_8(EXMC_SDRAM_DEVICE0, rxbuffer, WRITE_READ_ADDR, BUFFER_SIZE);
printf("\r\nSDRAM read data completed!");
delay_1ms(1000);
printf("\r\nCheck the data!");
delay_1ms(1000);
/* compare two buffers */
for(i = 0; i < BUFFER_SIZE; i++) {
if(rxbuffer[i] != txbuffer[i]) {
writereadstatus ++;
break;
}
}
if(writereadstatus) {
printf("\r\nSDRAM test failed!");
/* failure, light on LED2 */
gd_eval_led_on(LED2);
} else {
printf("\r\nSDRAM test succeeded!");
#if 0
delay_1ms(1000);
printf("\r\nThe data is:\r\n");
delay_1ms(1000);
for(i = 0; i < BUFFER_SIZE; i++) {
printf("%6x", rxbuffer[i]);
if(((i + 1) % 16) == 0) {
printf("\r\n");
}
}
#endif
/* success, light on LED1 */
gd_eval_led_on(LED1);
}
while(1) {
}
}
三.编译烧录测验
编译烧录查看日志如下:
图3:SDRAM读写日志
至此实现对SDRAM的读写功能,对于拓展RAM应用是挺有用的。
|