1.用28027开发板直接用SCI例程以下语句的主函数烧写,开发环境CCS6.0,仅能实现启动后串口助手显示MCU发送的一段文字,自己输入后无法显示出来。
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Prototype statements for functions found within this file.
void scia_echoback_init(void);
void scia_fifo_init(void);
void scia_xmit(int a);
void scia_msg(char *msg);
// Global counts used in this example
Uint16 LoopCount;
Uint16 ErrorCount;
void main(void)
{
Uint16 ReceivedChar;
char *msg;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2802x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2802x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); Skipped for this example
// For this example, only init the pins for the SCI-A port.
// This function is found in the DSP2802x_Sci.c file.
InitSciaGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2802x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2802x_DefaultIsr.c.
// This function is found in DSP2802x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2802x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code:
LoopCount = 0;
ErrorCount = 0;
scia_fifo_init(); // Initialize the SCI FIFO
scia_echoback_init(); // Initalize SCI for echoback
msg = "\r\n\n\nHello World!\0";
scia_msg(msg);
msg = "\r\nYou will enter a character, and the DSP will echo it back! \n\0";
scia_msg(msg);
for(;;)
{
msg = "\r\nEnter a character: \0";
scia_msg(msg);
// Wait for inc character
while(SciaRegs.SCIFFRX.bit.RXFFST !=1) { } // wait for XRDY =1 for empty state
// Get character
ReceivedChar = SciaRegs.SCIRXBUF.all;
// Echo character back
msg = " You sent: \0";
scia_msg(msg);
scia_xmit(ReceivedChar);
LoopCount++;
}
}
// Test 1,SCIA DLB, 8-bit word, baud rate 0x000F, default, 1 STOP bit, no parity
void scia_echoback_init()
{
// Note: Clocks were turned on to the SCIA peripheral
// in the InitSysCtrl() function
SciaRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
// No parity,8 char bits,
// async mode, idle-line protocol
SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
// Disable RX ERR, SLEEP, TXWAKE
SciaRegs.SCICTL2.all =0x0003;
SciaRegs.SCICTL2.bit.TXINTENA =1;
SciaRegs.SCICTL2.bit.RXBKINTENA =1;
// SCI BRR = LSPCLK/(SCI BAUDx8) - 1
#if (CPU_FRQ_60MHZ)
SciaRegs.SCIHBAUD =0x0000; // 9600 baud @LSPCLK = 15MHz (60 MHz SYSCLK).
SciaRegs.SCILBAUD =0x00C2;
#elif (CPU_FRQ_50MHZ)
SciaRegs.SCHBAUD =0x0000; // 9600 baud @LSPCLK = 12.5 MHz (50 MHz SYSCLK)
#elif (CPU_FRQ_40MHZ) =0x00A1;
SciaRegs.SCIHBAUD =0x0000; // 9600 baud @LSPCLK = 10MHz (40 MHz SYSCLK).
SciaRegs.SCILBAUD =0x0081;
#endif
SciaRegs.SCICCR.bit.LOOPBKENA=1;
SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
}
// Transmit a character from the SCI
void scia_xmit(int a)
{
while (SciaRegs.SCIFFTX.bit.TXFFST != 0) {}
SciaRegs.SCITXBUF=a;
}
void scia_msg(char * msg)
{
int i;
i = 0;
while(msg[i] != '\0')
{
scia_xmit(msg[i]);
i++;
}
}
// Initalize the SCI FIFO
void scia_fifo_init()
{
SciaRegs.SCIFFTX.all=0xE040;
SciaRegs.SCIFFRX.all=0x2044;
SciaRegs.SCIFFCT.all=0x0;
}
//===========================================================================
// No more.
//===========================================================================
|