【玄铁杯第三届RISC-V应用创新大赛】交叉编译环境
[复制链接]
1.下载HHB的docker镜像,下载完成如下图:
2.创建容器
3.在docker中安装ultralytics
生成 onnx后,将onnx文件拷贝到yolov5n的目录 ,然后执行下面的命令进行量化转化
hhb -D --model-file yolov5n.onnx --data-scale-div 255 --board th1520 --input-name "images" --output-name "/model.24/m.0/Conv_output_0;/model.24/m.1/Conv_output_0;/model.24/m.2/Conv_output_0" --input-shape "1 3 384 640" --calibrate-dataset kite.jpg --quantization-scheme "int8_asym"
得到的npu相关输出代码如下:
代码的交叉编译
export PATH=/tools/Xuantie-900-gcc-linux-5.10.4-glibc-x86_64-V2.6.1-light.1/bin/:$PATH
riscv64-unknown-linux-gnu-gcc yolov5n.c -o yolov5n_example hhb_out/io.c hhb_out/model.c -Wl,--gc-sections -O2 -g -mabi=lp64d -I hhb_out/ -L /usr/local/lib/python3.8/dist-packages/hhb/install_nn2/th1520/lib/ -lshl -L /usr/local/lib/python3.8/dist-packages/hhb/prebuilt/decode/install/lib/rv -L /usr/local/lib/python3.8/dist-packages/hhb/prebuilt/runtime/riscv_linux -lprebuilt_runtime -ljpeg -lpng -lz -lstdc++ -lm -I /usr/local/lib/python3.8/dist-packages/hhb/install_nn2/th1520/include/ -march=rv64gcv0p7_zfh_xtheadc -Wl,-unresolved-symbols=ignore-in-shared-libs
风筝识别结果如下图:
执行速度感觉偏慢。不过识别结果还是不错的下面是人和车的识别
|