bd0cb49af1194513d618272da0f33a85
前言
这一篇进行UART回环测试。
过程
新建工程
参考https://bbs.eeworld.com.cn/thread-1234259-1-1.html
新建工程uart
添加如下文件到工程
uart_loop.v
module uart_loop(
input sys_clk, //系统时钟
input sys_rst_n, //系统复位,低电平有效
input recv_done, //接收一帧数据完成标志
input [7:0] recv_data, //接收的数据
input tx_busy, //发送忙状态标志
output reg send_en, //发送使能信号
output reg [7:0] send_data //待发送数据
);
//reg define
reg recv_done_d0;
reg recv_done_d1;
reg tx_ready;
//wire define
wire recv_done_flag;
//*****************************************************
//** main code
//*****************************************************
//捕获recv_done上升沿,得到一个时钟周期的脉冲信号
assign recv_done_flag = (~recv_done_d1) & recv_done_d0;
//对发送使能信号recv_done延迟两个时钟周期
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
recv_done_d0 <= 1'b0;
recv_done_d1 <= 1'b0;
end
else begin
recv_done_d0 <= recv_done;
recv_done_d1 <= recv_done_d0;
end
end
//判断接收完成信号,并在串口发送模块空闲时给出发送使能信号
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
tx_ready <= 1'b0;
send_en <= 1'b0;
send_data <= 8'd0;
end
else begin
if(recv_done_flag)begin //检测串口接收到数据
tx_ready <= 1'b1; //准备启动发送过程
send_en <= 1'b0;
send_data <= recv_data; //寄存串口接收的数据
end
else if(tx_ready && (~tx_busy)) begin //检测串口发送模块空闲
tx_ready <= 1'b0; //准备过程结束
send_en <= 1'b1; //拉高发送使能信号
end
end
end
endmodule
uart_loopback_top.v
module uart_loopback_top(
input sys_clk, //外部50M时钟
input sys_rst_n, //外部复位信号,低有效
input uart_rxd, //UART接收端口
output uart_txd //UART发送端口
);
//parameter define
parameter CLK_FREQ = 25000000; //定义系统时钟频率
parameter UART_BPS = 9600; //定义串口波特率
//wire define
wire uart_recv_done; //UART接收完成
wire [7:0] uart_recv_data; //UART接收数据
wire uart_send_en; //UART发送使能
wire [7:0] uart_send_data; //UART发送数据
wire uart_tx_busy; //UART发送忙状态标志
//*****************************************************
//** main code
//*****************************************************
//串口接收模块
uart_recv #(
.CLK_FREQ (CLK_FREQ), //设置系统时钟频率
.UART_BPS (UART_BPS)) //设置串口接收波特率
u_uart_recv(
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n),
.uart_rxd (uart_rxd),
.uart_done (uart_recv_done),
.uart_data (uart_recv_data)
);
//串口发送模块
uart_send #(
.CLK_FREQ (CLK_FREQ), //设置系统时钟频率
.UART_BPS (UART_BPS)) //设置串口发送波特率
u_uart_send(
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n),
.uart_en (uart_send_en),
.uart_din (uart_send_data),
.uart_tx_busy (uart_tx_busy),
.uart_txd (uart_txd)
);
//串口环回模块
uart_loop u_uart_loop(
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n),
.recv_done (uart_recv_done), //接收一帧数据完成标志信号
.recv_data (uart_recv_data), //接收的数据
.tx_busy (uart_tx_busy), //发送忙状态标志
.send_en (uart_send_en), //发送使能信号
.send_data (uart_send_data) //待发送数据
);
endmodule
uart_recv.v
module uart_recv(
input sys_clk, //系统时钟
input sys_rst_n, //系统复位,低电平有效
input uart_rxd, //UART接收端口
output reg uart_done, //接收一帧数据完成标志
output reg rx_flag, //接收过程标志信号
output reg [3:0] rx_cnt, //接收数据计数器
output reg [7:0] rxdata,
output reg [7:0] uart_data //接收的数据
);
//parameter define
parameter CLK_FREQ = 25000000; //系统时钟频率
parameter UART_BPS = 9600; //串口波特率
localparam BPS_CNT = CLK_FREQ/UART_BPS; //为得到指定波特率,
//需要对系统时钟计数BPS_CNT次
//reg define
reg uart_rxd_d0;
reg uart_rxd_d1;
reg [15:0] clk_cnt; //系统时钟计数器
//wire define
wire start_flag;
//*****************************************************
//** main code
//*****************************************************
//捕获接收端口下降沿(起始位),得到一个时钟周期的脉冲信号
assign start_flag = uart_rxd_d1 & (~uart_rxd_d0);
//对UART接收端口的数据延迟两个时钟周期
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
uart_rxd_d0 <= 1'b0;
uart_rxd_d1 <= 1'b0;
end
else begin
uart_rxd_d0 <= uart_rxd;
uart_rxd_d1 <= uart_rxd_d0;
end
end
//当脉冲信号start_flag到达时,进入接收过程
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
rx_flag <= 1'b0;
else begin
if(start_flag) //检测到起始位
rx_flag <= 1'b1; //进入接收过程,标志位rx_flag拉高
//计数到停止位中间时,停止接收过程
else if((rx_cnt == 4'd9) && (clk_cnt == BPS_CNT/2))
rx_flag <= 1'b0; //接收过程结束,标志位rx_flag拉低
else
rx_flag <= rx_flag;
end
end
//进入接收过程后,启动系统时钟计数器
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
clk_cnt <= 16'd0;
else if ( rx_flag ) begin //处于接收过程
if (clk_cnt < BPS_CNT - 1)
clk_cnt <= clk_cnt + 1'b1;
else
clk_cnt <= 16'd0; //对系统时钟计数达一个波特率周期后清零
end
else
clk_cnt <= 16'd0; //接收过程结束,计数器清零
end
//进入接收过程后,启动接收数据计数器
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
rx_cnt <= 4'd0;
else if ( rx_flag ) begin //处于接收过程
if (clk_cnt == BPS_CNT - 1) //对系统时钟计数达一个波特率周期
rx_cnt <= rx_cnt + 1'b1; //此时接收数据计数器加1
else
rx_cnt <= rx_cnt;
end
else
rx_cnt <= 4'd0; //接收过程结束,计数器清零
end
//根据接收数据计数器来寄存uart接收端口数据
always @(posedge sys_clk or negedge sys_rst_n) begin
if ( !sys_rst_n)
rxdata <= 8'd0;
else if(rx_flag) //系统处于接收过程
if (clk_cnt == BPS_CNT/2) begin //判断系统时钟计数器计数到数据位中间
case ( rx_cnt )
4'd1 : rxdata[0] <= uart_rxd_d1; //寄存数据位最低位
4'd2 : rxdata[1] <= uart_rxd_d1;
4'd3 : rxdata[2] <= uart_rxd_d1;
4'd4 : rxdata[3] <= uart_rxd_d1;
4'd5 : rxdata[4] <= uart_rxd_d1;
4'd6 : rxdata[5] <= uart_rxd_d1;
4'd7 : rxdata[6] <= uart_rxd_d1;
4'd8 : rxdata[7] <= uart_rxd_d1; //寄存数据位最高位
default:;
endcase
end
else
rxdata <= rxdata;
else
rxdata <= 8'd0;
end
//数据接收完毕后给出标志信号并寄存输出接收到的数据
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
uart_data <= 8'd0;
uart_done <= 1'b0;
end
else if(rx_cnt == 4'd9) begin //接收数据计数器计数到停止位时
uart_data <= rxdata; //寄存输出接收到的数据
uart_done <= 1'b1; //并将接收完成标志位拉高
end
else begin
uart_data <= 8'd0;
uart_done <= 1'b0;
end
end
endmodule
uart_send.v
module uart_send(
input sys_clk, //系统时钟
input sys_rst_n, //系统复位,低电平有效
input uart_en, //发送使能信号
input [ 7:0] uart_din, //待发送数据
output uart_tx_busy, //发送忙状态标志
output en_flag ,
output reg tx_flag, //发送过程标志信号
output reg [ 7:0] tx_data, //寄存发送数据
output reg [ 3:0] tx_cnt, //发送数据计数器
output reg uart_txd //UART发送端口
);
//parameter define
parameter CLK_FREQ = 25000000; //系统时钟频率
parameter UART_BPS = 9600; //串口波特率
localparam BPS_CNT = CLK_FREQ/UART_BPS; //为得到指定波特率,对系统时钟计数BPS_CNT次
//reg define
reg uart_en_d0;
reg uart_en_d1;
reg [15:0] clk_cnt; //系统时钟计数器
//*****************************************************
//** main code
//*****************************************************
//在串口发送过程中给出忙状态标志
assign uart_tx_busy = tx_flag;
//捕获uart_en上升沿,得到一个时钟周期的脉冲信号
assign en_flag = (~uart_en_d1) & uart_en_d0;
//对发送使能信号uart_en延迟两个时钟周期
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
uart_en_d0 <= 1'b0;
uart_en_d1 <= 1'b0;
end
else begin
uart_en_d0 <= uart_en;
uart_en_d1 <= uart_en_d0;
end
end
//当脉冲信号en_flag到达时,寄存待发送的数据,并进入发送过程
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
tx_flag <= 1'b0;
tx_data <= 8'd0;
end
else if (en_flag) begin //检测到发送使能上升沿
tx_flag <= 1'b1; //进入发送过程,标志位tx_flag拉高
tx_data <= uart_din; //寄存待发送的数据
end
//计数到停止位结束时,停止发送过程
else if ((tx_cnt == 4'd9) && (clk_cnt == BPS_CNT - (BPS_CNT/16))) begin
tx_flag <= 1'b0; //发送过程结束,标志位tx_flag拉低
tx_data <= 8'd0;
end
else begin
tx_flag <= tx_flag;
tx_data <= tx_data;
end
end
//进入发送过程后,启动系统时钟计数器
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
clk_cnt <= 16'd0;
else if (tx_flag) begin //处于发送过程
if (clk_cnt < BPS_CNT - 1)
clk_cnt <= clk_cnt + 1'b1;
else
clk_cnt <= 16'd0; //对系统时钟计数达一个波特率周期后清零
end
else
clk_cnt <= 16'd0; //发送过程结束
end
//进入发送过程后,启动发送数据计数器
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
tx_cnt <= 4'd0;
else if (tx_flag) begin //处于发送过程
if (clk_cnt == BPS_CNT - 1) //对系统时钟计数达一个波特率周期
tx_cnt <= tx_cnt + 1'b1; //此时发送数据计数器加1
else
tx_cnt <= tx_cnt;
end
else
tx_cnt <= 4'd0; //发送过程结束
end
//根据发送数据计数器来给uart发送端口赋值
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
uart_txd <= 1'b1;
else if (tx_flag)
case(tx_cnt)
4'd0: uart_txd <= 1'b0; //起始位
4'd1: uart_txd <= tx_data[0]; //数据位最低位
4'd2: uart_txd <= tx_data[1];
4'd3: uart_txd <= tx_data[2];
4'd4: uart_txd <= tx_data[3];
4'd5: uart_txd <= tx_data[4];
4'd6: uart_txd <= tx_data[5];
4'd7: uart_txd <= tx_data[6];
4'd8: uart_txd <= tx_data[7]; //数据位最高位
4'd9: uart_txd <= 1'b1; //停止位
default: ;
endcase
else
uart_txd <= 1'b1; //空闲时发送端口为高电平
end
endmodule
约束
25M时钟输入对应D7
没有专门的复位按键就使用KEY0 H3
串口对应A4 vE4
约束如下
运行测试
串口调试助手不断发送数据,接收到原样返回数据。
总结
本篇测试了串口的收发,后面可以封装下实现串口打印。