|
【贝能高性价比ATSAMD51评估板】基准性能测试之四:并发计算基准测试livermore_loops
[复制链接]
前言
利弗莫尔循环 [1] (英语:Livermore loops,也称为利弗莫尔Fortran核或LFK)是计算机并发计算的基准测试。
过程
添加代码
获取代码
http://www.roylongbottom.org.uk/classic_benchmarks.tar.gz
解压classic_benchmarks.tar.gz将\classic_benchmarks\classic_benchmarks\source_code\livermore_loops文件夹复制到自己的工程。
添加代码
将\classic_benchmarks\source_code\livermore_loops文件夹复制到工程目录,并添加工程中
移植接口
lloops.c中
23行注释掉//#include "cpuidh.h"
327行 main(int argc, char *argv[])
改为
int main(int argc, char *argv[])
注释掉378行
#if 0
outfile = fopen("LLloops.txt","a+");
if (outfile == NULL)
{
printf (" Cannot open results file LLloops.txt\n\n");
printf(" Press Enter\n\n");
gg = getchar();
exit (0);
}
getDetails();
for (i=1; i<10; i++)
{
printf("%s\n", configdata);
}
printf("\n");
fprintf (outfile, " #####################################################\n\n");
for (i=1; i<10; i++)
{
fprintf(outfile, "%s \n", configdata);
}
fprintf (outfile, "\n");
local_time();
fprintf (outfile, " #####################################################\n\n");
fprintf (outfile, " Livermore Loops Benchmark %s via C/C++ %s\n", options, timeday);
if (reliability)
{
fprintf (outfile, " Reliability test %3.0f seconds each loop x 24 x 3\n\n", runSecs);
}
fflush(outfile);
#endif
start_time();改为
uint32_t s_stime_u32 = SYSTICK_GetTickCounter();
end_time();改为
uint32_t s_etime_u32 = SYSTICK_GetTickCounter();
double secs = (s_etime_u32-s_stime_u32)/1000.0;
添加
#include <stdint.h>
#include "definitions.h"
#include <string.h>
注释掉480行
///local_time();
///fprintf (outfile, " Part %ld of 3 start at %s\n", section + 1, timeday);
///fflush(outfile);
编译空间不够
需要修改减小loops大小
101改为LOOPS1 替换
#define LOOPS1 11
100改为LOOPS4 替换
#define LOOPS4 10
1001改为LOOPS2 替换
#define LOOPS2 101
1000改为LOOPS3 替换
#define LOOPS3 100
2042行
//for ( k=0 ; k<19977 + 34132 ; k++)改为
for ( k=0 ; k<LOOPS2 ; k++)
测试
main.c中
申明 int livermore_loops_main (int argc, char *argv[]);
int main ( void )
{
/* Initialize all modules */
SYS_Initialize ( NULL );
SYSTICK_TimerStart();
PORT_REGS->GROUP[1].PORT_PINCFG[24] = 0x1U;
PORT_REGS->GROUP[1].PORT_PINCFG[25] = 0x1U;
PORT_REGS->GROUP[1].PORT_PMUX[12] = 0x33U;
livermore_loops_main(0,0);
while ( true )
{
/* Maintain state machines of all polled MPLAB Harmony modules. */
SYS_Tasks ( );
}
/* Execution should not come here during normal operation */
return ( EXIT_FAILURE );
}
结果如下
这里值不对待确认
http://www.roylongbottom.org.uk/livermore%20loops%20results.htm
对比得分比AMD 80386高些
总结
本文进行了并发运算性能测试,也和其他芯片对比,可以横向参考下芯片的性能。
附录代码
/************************************************************************
* gcc lloops.c cpuidc64.o cpuida64.o -m64 -lrt -lc -lm -o lloops *
* *
* L. L. N. L. " C " K E R N E L S: M F L O P S P C V E R S I O N *
*
* #define Version not used
*
* Different compilers can produce different floating point numeric
* results, probably due to compiling instructions in a different
* sequence. As the program checks these, they may need to be changed.
* The log file indicates non-standard results and these values can
* be copied and pasted into this program. See // Values near the end
* in checkOut(). Some values are for optimised compiling and non-
* optimised results might be different.
*
* Change #define options for print of optimisation level and
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
//#include "cpuidh.h"
#include <stdint.h>
#include <string.h>
#include "definitions.h"
#define LOOPS1 11
#define LOOPS4 10
#define LOOPS2 101
#define LOOPS3 100
struct Arrays
{
double U[LOOPS2];
double V[LOOPS2];
double W[LOOPS2];
double X[LOOPS2];
double Y[LOOPS2];
double Z[LOOPS2];
double G[LOOPS2];
double Du1[LOOPS1];
double Du2[LOOPS1];
double Du3[LOOPS1];
double Grd[LOOPS2];
double Dex[LOOPS2];
double Xi[LOOPS2];
double Ex[LOOPS2];
double Ex1[LOOPS2];
double Dex1[LOOPS2];
double Vx[LOOPS2];
double Xx[LOOPS2];
double Rx[LOOPS2];
double Rh[2048];
double Vsp[LOOPS1];
double Vstp[LOOPS1];
double Vxne[LOOPS1];
double Vxnd[LOOPS1];
double Ve3[LOOPS1];
double Vlr[LOOPS1];
double Vlin[LOOPS1];
double B5[LOOPS1];
double Plan[300];
double D[300];
double Sa[LOOPS1];
double Sb[LOOPS1];
double P[512][4];
double Px[LOOPS1][25];
double Cx[LOOPS1][25];
double Vy[25][LOOPS1];
double Vh[7][LOOPS1];
double Vf[7][LOOPS1];
double Vg[7][LOOPS1];
double Vs[7][LOOPS1];
double Za[7][LOOPS1];
double Zp[7][LOOPS1];
double Zq[7][LOOPS1];
double Zr[7][LOOPS1];
double Zm[7][LOOPS1];
double Zb[7][LOOPS1];
double Zu[7][LOOPS1];
double Zv[7][LOOPS1];
double Zz[7][LOOPS1];
double B[64][64];
double C[64][64];
double H[64][64];
double U1[2][LOOPS1][5];
double U2[2][LOOPS1][5];
double U3[2][LOOPS1][5];
double Xtra[40];
long E[96];
long F[96];
long Ix[LOOPS2];
long Ir[LOOPS2];
long Zone[301];
double X0[LOOPS2];
double W0[LOOPS2];
double Px0[LOOPS1][25];
double P0[512][4];
double H0[64][64];
double Rh0[2048];
double Vxne0[LOOPS1];
double Zr0[7][LOOPS1];
double Zu0[7][LOOPS1];
double Zv0[7][LOOPS1];
double Zz0[7][LOOPS1];
double Za0[LOOPS1][25];
double Stb50;
double Xx0;
}as1;
#define u as1.U
#define v as1.V
#define w as1.W
#define x as1.X
#define y as1.Y
#define z as1.Z
#define g as1.G
#define du1 as1.Du1
#define du2 as1.Du2
#define du3 as1.Du3
#define grd as1.Grd
#define dex as1.Dex
#define xi as1.Xi
#define ex as1.Ex
#define ex1 as1.Ex1
#define dex1 as1.Dex1
#define vx as1.Vx
#define xx as1.Xx
#define rx as1.Rx
#define rh as1.Rh
#define vsp as1.Vsp
#define vstp as1.Vstp
#define vxne as1.Vxne
#define vxnd as1.Vxnd
#define ve3 as1.Ve3
#define vlr as1.Vlr
#define vlin as1.Vlin
#define b5 as1.B5
#define plan as1.Plan
#define d as1.D
#define sa as1.Sa
#define sb as1.Sb
#define p as1.P
#define px as1.Px
#define cx as1.Cx
#define vy as1.Vy
#define vh as1.Vh
#define vf as1.Vf
#define vg as1.Vg
#define vs as1.Vs
#define za as1.Za
#define zb as1.Zb
#define zp as1.Zp
#define zq as1.Zq
#define zr as1.Zr
#define zm as1.Zm
#define zz as1.Zz
#define zu as1.Zu
#define zv as1.Zv
#define b as1.B
#define c as1.C
#define h as1.H
#define u1 as1.U1
#define u2 as1.U2
#define u3 as1.U3
#define xtra as1.Xtra
#define a11 as1.Xtra[1]
#define a12 as1.Xtra[2]
#define a13 as1.Xtra[3]
#define a21 as1.Xtra[4]
#define a22 as1.Xtra[5]
#define a23 as1.Xtra[6]
#define a31 as1.Xtra[7]
#define a32 as1.Xtra[8]
#define a33 as1.Xtra[9]
#define c0 as1.Xtra[12]
#define dk as1.Xtra[15]
#define dm22 as1.Xtra[16]
#define dm23 as1.Xtra[17]
#define dm24 as1.Xtra[18]
#define dm25 as1.Xtra[19]
#define dm26 as1.Xtra[20]
#define dm27 as1.Xtra[21]
#define dm28 as1.Xtra[22]
#define expmax as1.Xtra[26]
#define flx as1.Xtra[27]
#define q as1.Xtra[28]
#define r as1.Xtra[30]
#define s as1.Xtra[32]
#define sig as1.Xtra[34]
#define stb5 as1.Xtra[35]
#define t as1.Xtra[36]
#define xnm as1.Xtra[39]
#define e as1.E
#define f as1.F
#define ix as1.Ix
#define ir as1.Ir
#define zone as1.Zone
#define x0 as1.X0
#define w0 as1.W0
#define px0 as1.Px0
#define p0 as1.P0
#define h0 as1.H0
#define rh0 as1.Rh0
#define vxne0 as1.Vxne0
#define zr0 as1.Zr0
#define zu0 as1.Zu0
#define zv0 as1.Zv0
#define zz0 as1.Zz0
#define za0 as1.Za0
#define stb50 as1.Stb50
#define xx0 as1.Xx0
struct Parameters
{
long Inner_loops;
long Outer_loops;
long Loop_mult;
double Flops_per_loop;
double Sumcheck[3][25];
long Accuracy[3][25];
double LoopTime[3][25];
double LoopSpeed[3][25];
double LoopFlos[3][25];
long Xflops[25];
long Xloops[3][25];
long Nspan[3][25];
double TimeStart;
double TimeEnd;
double Loopohead;
long Count;
long Count2;
long Pass;
long Extra_loops[3][25];
long K2;
long K3;
long M16;
long J5;
long Section;
long N16;
double Mastersum;
long M24;
}as2;
#define n as2.Inner_loops
#define loop as2.Outer_loops
#define mult as2.Loop_mult
#define nflops as2.Flops_per_loop
#define Checksum as2.Sumcheck
#define accuracy as2.Accuracy
#define RunTime as2.LoopTime
#define Mflops as2.LoopSpeed
#define FPops as2.LoopFlos
#define nspan as2.Nspan
#define xflops as2.Xflops
#define xloops as2.Xloops
#define StartTime as2.TimeStart
#define EndTime as2.TimeEnd
#define overhead_l as2.Loopohead
#define count as2.Count
#define count2 as2.Count2
#define pass as2.Pass
#define extra_loops as2.Extra_loops
#define k2 as2.K2
#define k3 as2.K3
#define m16 as2.M16
#define j5 as2.J5
#define section as2.Section
#define n16 as2.N16
#define MasterSum as2.Mastersum
#define m24 as2.M24
// VERSION
#ifdef CNNT
#define options "Non-optimised"
#define opt "0"
#else
// #define options "Optimised"
#define options "Opt 3 64 Bit"
#define opt "3"
#endif
typedef int Boolean;
#define TRUE 1
#define FALSE 0
double runSecs = 1;
Boolean reliability = FALSE;
Boolean runRel;
Boolean nsRes = FALSE;
double sumscomp[3][25];
int compareFail = 0;
int failCount;
FILE *outfile;
void init(long which);
/* Initialises arrays and variables */
long endloop(long which);
/* Controls outer loops and stores results */
long parameters(long which);
/* Gets loop parameters and variables, starts timer */
void kernels();
/* The 24 kernels */
void check(long which);
/* Calculates checksum accuracy */
void iqranf();
/* Random number generator for Kernel 14 */
void checkOut(int which);
// Check results
static uint32_t s_stime_u32;
static uint32_t s_etime_u32;
int livermore_loops_main(int argc, char *argv[])
{
double pass_time, least, lmult, now = 1.0, wt;
long i, k, loop_passes;
long mul[3] = {1, 2, 8};
double weight[3] = {1.0, 2.0, 1.0};
long Endit, which;
double maximum[4];
double minimum[4];
double average[4];
double harmonic[4];
double geometric[4];
long xspan[4];
char general[9][80] = {" "};
int param;
int gg;
int nopause = 1;
if (argc > 1)
{
switch (argv[1][0])
{
case 'N':
nopause = 0;
break;
case 'n':
nopause = 0;
break;
}
}
if (argc > 2)
{
sscanf(argv[2], "%d", ¶m);
if (param > 0)
{
runSecs = param;
reliability = TRUE;
if (runSecs > 60) runSecs = 60;
}
}
printf ("L.L.N.L. 'C' KERNELS: MFLOPS P.C. VERSION 4.0\n\n");
printf("Optimisation %s\n\n",options);
/************************************************************************
* Open results file LLloops.txt *
************************************************************************/
#if 0
outfile = fopen("LLloops.txt","a+");
if (outfile == NULL)
{
printf (" Cannot open results file LLloops.txt\n\n");
printf(" Press Enter\n\n");
gg = getchar();
exit (0);
}
getDetails();
for (i=1; i<10; i++)
{
printf("%s\n", configdata);
}
printf("\n");
fprintf (outfile, " #####################################################\n\n");
for (i=1; i<10; i++)
{
fprintf(outfile, "%s \n", configdata);
}
fprintf (outfile, "\n");
local_time();
fprintf (outfile, " #####################################################\n\n");
fprintf (outfile, " Livermore Loops Benchmark %s via C/C++ %s\n", options, timeday);
if (reliability)
{
fprintf (outfile, " Reliability test %3.0f seconds each loop x 24 x 3\n\n", runSecs);
}
fflush(outfile);
#endif
/************************************************************************
* Calculate overhead of executing endloop procedure *
************************************************************************/
printf ("Calculating outer loop overhead\n");
pass = -20;
extra_loops[0][0] = 1;
loop = LOOPS3;
which = 0;
section = 0;
runRel = FALSE;
do
{
//start_time();
s_stime_u32 = SYSTICK_GetTickCounter();
count = 0;
count2 = 0;
pass = pass + 1;
do
{
endloop (0);
}
while (count < loop);
//end_time();
s_etime_u32 = SYSTICK_GetTickCounter();
double secs = (s_etime_u32-s_stime_u32)/1000.0;
overhead_l = secs;
printf ("%10ld times %6.2f seconds\n", loop, overhead_l);
if (overhead_l > 0.2)
{
pass = 0;
}
if (pass < 0)
{
if (overhead_l < (double)runSecs / 50)
{
loop = loop * 10;
}
else
{
loop = loop * 2;
}
}
}
while (pass < 0);
overhead_l = overhead_l / (double)(loop);
printf ("Overhead for each loop %12.4e seconds\n\n", overhead_l);
/************************************************************************
* Execute the kernels three times at different Do Spans *
************************************************************************/
for ( section=0 ; section<3 ; section++ )
{
loop_passes = 200 * mul[section];
pass = -20;
mult = 2 * mul[section];
runRel = FALSE;
for ( i=1; i<25; i++)
{
extra_loops[section] = 1;
}
if (reliability)
{
///local_time();
///fprintf (outfile, " Part %ld of 3 start at %s\n", section + 1, timeday);
///fflush(outfile);
}
/************************************************************************
* Calculate extra loops for running time of runSecs seconds per kernel *
************************************************************************/
printf ("Calibrating part %ld of 3\n\n", section + 1);
do
/* Run a number of times with increased number of loops
or until the time for each loop is at least 0.001 seconds */
{
pass = pass + 1;
mult = mult * 2;
count2 = 0;
for ( i=1; i<25; i++)
{
RunTime[section] = 0.0;
}
//start_time();
s_stime_u32 = SYSTICK_GetTickCounter();
kernels();
//end_time();
s_etime_u32 = SYSTICK_GetTickCounter();
double secs = (s_etime_u32-s_stime_u32)/1000.0;
pass_time = secs;
least = 1.0;
for ( i=1; i<25; i++)
{
if (RunTime[section] < 0.001)
{
least = 0.0;
RunTime[section] = 0.0008;
extra_loops[section] = extra_loops[section] * 2;
}
}
printf ("Loop count %10ld %5.2f seconds\n", mult, pass_time);
if (least > 0.0 )
{
pass = 0;
}
else
{
if (pass_time < (double)runSecs / 5)
{
mult = mult * 2;
}
}
}
while (pass < 0);
lmult = (double)(mult) / (double)(loop_passes);
for ( i=1; i<25; i++)
{
/* Calculate extra loops to produce a run time of about runSecs seconds
for each kernel. For each of the extra loops the parameters
are re-initialised. The time for initialising parameters is
not included in the loop time. */
extra_loops[section] = (long)(runSecs / RunTime[section]
* (double)extra_loops[section] * lmult) +1;
RunTime[section] = 0.0;
}
mult = loop_passes;
printf ("\nLoops 200 x %2ld x Passes\n\n", mul[section]);
printf ("Kernel Floating Pt ops\n");
printf ("No Passes E No Total Secs. MFLOPS Span "
"Checksums OK\n");
printf ("------------ -- ------------- ----- ------- ---- "
"---------------------- --\n");
pass = 1;
count2 = 0;
if (reliability) runRel = TRUE;
/************************************************************************
* Execute the kernels *
************************************************************************/
kernels();
maximum[section] = 0.0;
minimum[section] = Mflops[section][1];
average[section] = 0.0;
harmonic[section] = 0.0;
geometric[section] = 0.0;
xspan[section] = 0;
/************************************************************************
* Calculate averages etc. *
************************************************************************/
for ( k=1 ; k<=24 ; k++ )
{
average[section] = average[section] + Mflops[section][k];
harmonic[section] = harmonic[section] + 1 / Mflops[section][k];
geometric[section] = geometric[section] + log(Mflops[section][k]);
xspan[section] = xspan[section] + nspan[section][k];
if (Mflops[section][k] < minimum[section])
{
minimum[section] = Mflops[section][k];
}
if (Mflops[section][k] > maximum[section])
{
maximum[section] = Mflops[section][k];
}
}
average[section] = average[section] / 24.0;
harmonic[section] = 24.0 / harmonic[section];
geometric[section] = exp(geometric[section] / 24.0);
xspan[section] = xspan[section] / 24;
if (pass > 0)
/************************************************************************
* Display averages etc. except during calibration *
************************************************************************/
{
printf ("\n");
printf (" Maximum Rate%8.2f \n",
maximum[section]);
printf (" Average Rate%8.2f \n",
average[section]);
printf (" Geometric Mean%8.2f \n",
geometric[section]);
printf (" Harmonic Mean%8.2f \n",
harmonic[section]);
printf (" Minimum Rate%8.2f \n\n",
minimum[section]);
printf (" Do Span %4ld\n\n",
xspan[section]);
}
}
/************************************************************************
* End of executing the kernels three times at different Do Spans *
************************************************************************/
maximum[3] = 0.0;
minimum[3] = Mflops[0][1];
average[3] = 0.0;
harmonic[3] = 0.0;
geometric[3] = 0.0;
xspan[3] = 0;
wt = 0.0;
/************************************************************************
* Calculate weighted averages for all Do Spans and display *
************************************************************************/
for ( section=0 ; section<3 ; section++ )
{
for ( k=1 ; k<=24 ; k++ )
{
average[3] = average[3] + weight[section]
* Mflops[section][k];
harmonic[3] = harmonic[3] + weight[section]
/ Mflops[section][k];
geometric[3] = geometric[3] + weight[section]
* log(Mflops[section][k]);
xspan[3] = xspan[3] + (long)weight[section]
* nspan[section][k];
if (Mflops[section][k] < minimum[3])
{
minimum[3] = Mflops[section][k];
}
if (Mflops[section][k] > maximum[3])
{
maximum[3] = Mflops[section][k];
}
}
wt = wt + weight[section];
}
average[3] = average[3] / (24.0 * wt);
harmonic[3] = 24.0 * wt / harmonic[3];
geometric[3] = exp(geometric[3] / (24.0 * wt));
xspan[3] = (long)((double)xspan[3] / (24.0 * wt));
printf (" Overall\n\n");
printf (" Part 1 weight 1\n");
printf (" Part 2 weight 2\n");
printf (" Part 3 weight 1\n\n");
printf (" Maximum Rate%8.2f \n", maximum[3]);
printf (" Average Rate%8.2f \n", average[3]);
printf (" Geometric Mean%8.2f \n", geometric[3]);
printf (" Harmonic Mean%8.2f \n", harmonic[3]);
printf (" Minimum Rate%8.2f \n\n", minimum[3]);
printf (" Do Span %4ld\n\n", xspan[3]);
if (reliability)
{
if (!compareFail)
{
if (nsRes)
{
fprintf(outfile, "\n Numeric results were consistent with first\n\n");
}
else
{
fprintf(outfile, " Numeric results were as expected\n\n");
}
}
else
{
printf("\n ERRORS have occurred - see log file\n");
fprintf (outfile, "\n");
}
}
/************************************************************************
* Add results to output file LLloops.txt *
************************************************************************/
fprintf (outfile, " MFLOPS for 24 loops\n");
for ( which=1; which<13 ; which++ )
{
if (Mflops[0][which] < 10000)
{
fprintf (outfile, "%7.1f", Mflops[0][which]);
}
else
{
fprintf (outfile, "%7.0f", Mflops[0][which]);
}
}
fprintf (outfile, "\n");
for ( which=13; which<25 ; which++ )
{
if (Mflops[0][which] < 10000)
{
fprintf (outfile, "%7.1f", Mflops[0][which]);
}
else
{
fprintf (outfile, "%7.0f", Mflops[0][which]);
}
}
fprintf (outfile, "\n\n");
fprintf (outfile, " Overall Ratings\n");
fprintf (outfile, " Maximum Average Geomean Harmean Minimum\n");
fprintf (outfile, "%8.1f%8.1f%8.1f%8.1f%8.1f\n\n",
maximum[3], average[3], geometric[3], harmonic[3], minimum[3]);
if (!reliability)
{
checkOut(which);
}
if (nopause)
{
printf(" Press Enter\n\n");
gg = getchar();
}
return 0;
}
/************************************************************************
* The Kernels *
************************************************************************/
void kernels()
{
long lw;
long ipnt, ipntp, ii;
double temp;
long nl1, nl2;
long kx, ky;
double ar, br, cr;
long i, j, k, m;
long ip, i1, i2, j1, j2, j4, lb;
long ng, nz;
double tmp;
double scale, xnei, xnc, e3,e6;
long ink, jn, kn, kb5i;
double di, dn;
double qa;
for ( k=0 ; k<25; k++)
{
Checksum[section][k] = 0.0;
}
/*
*******************************************************************
* Kernel 1 -- hydro fragment
*******************************************************************
*/
parameters (1);
do
{
for ( k=0 ; k<n ; k++ )
{
x[k] = q + y[k]*( r*z[k+10] + t*z[k+11] );
}
endloop (1);
}
while (count < loop);
/*
*******************************************************************
* Kernel 2 -- ICCG excerpt (Incomplete Cholesky Conjugate Gradient)
*******************************************************************
*/
parameters (2);
do
{
ii = n;
ipntp = 0;
do
{
ipnt = ipntp;
ipntp += ii;
ii /= 2;
i = ipntp;
for ( k=ipnt+1 ; k<ipntp ; k=k+2 )
{
i++;
x = x[k] - v[k]*x[k-1] - v[k+1]*x[k+1];
}
} while ( ii>0 );
endloop (2);
}
while (count < loop);
/*
*******************************************************************
* Kernel 3 -- inner product
*******************************************************************
*/
parameters (3);
do
{
q = 0.0;
for ( k=0 ; k<n ; k++ )
{
q += z[k]*x[k];
}
endloop (3);
}
while (count < loop);
/*
*******************************************************************
* Kernel 4 -- banded linear equations
*******************************************************************
*/
parameters (4);
m = ( LOOPS2-7 )/2;
do
{
for ( k=6 ; k<LOOPS2 ; k=k+m )
{
lw = k - 6;
temp = x[k-1];
for ( j=4 ; j<n ; j=j+5 )
{
temp -= x[lw]*y[j];
lw++;
}
x[k-1] = y[4]*temp;
}
endloop (4);
}
while (count < loop);
/*
*******************************************************************
* Kernel 5 -- tri-diagonal elimination, below diagonal
*******************************************************************
*/
parameters (5);
do
{
for ( i=1 ; i<n ; i++ )
{
x = z*( y - x[i-1] );
}
endloop (5);
}
while (count < loop);
/*
*******************************************************************
* Kernel 6 -- general linear recurrence equations
*******************************************************************
*/
parameters (6);
do
{
for ( i=1 ; i<n ; i++ )
{
w = 0.01;
for ( k=0 ; k<i ; k++ )
{
w += b[k] * w[(i-k)-1];
}
}
endloop (6);
}
while (count < loop);
/*
*******************************************************************
* Kernel 7 -- equation of state fragment
*******************************************************************
*/
parameters (7);
do
{
for ( k=0 ; k<n ; k++ )
{
x[k] = u[k] + r*( z[k] + r*y[k] ) +
t*( u[k+3] + r*( u[k+2] + r*u[k+1] ) +
t*( u[k+6] + q*( u[k+5] + q*u[k+4] ) ) );
}
endloop (7);
}
while (count < loop);
/*
*******************************************************************
* Kernel 8 -- ADI integration
*******************************************************************
*/
nl1 = 0;
nl2 = 1;
parameters (8);
do
{
for ( kx=1 ; kx<3 ; kx++ )
{
for ( ky=1 ; ky<n ; ky++ )
{
du1[ky] = u1[nl1][ky+1][kx] - u1[nl1][ky-1][kx];
du2[ky] = u2[nl1][ky+1][kx] - u2[nl1][ky-1][kx];
du3[ky] = u3[nl1][ky+1][kx] - u3[nl1][ky-1][kx];
u1[nl2][ky][kx]=
u1[nl1][ky][kx]+a11*du1[ky]+a12*du2[ky]+a13*du3[ky] + sig*
(u1[nl1][ky][kx+1]-2.0*u1[nl1][ky][kx]+u1[nl1][ky][kx-1]);
u2[nl2][ky][kx]=
u2[nl1][ky][kx]+a21*du1[ky]+a22*du2[ky]+a23*du3[ky] + sig*
(u2[nl1][ky][kx+1]-2.0*u2[nl1][ky][kx]+u2[nl1][ky][kx-1]);
u3[nl2][ky][kx]=
u3[nl1][ky][kx]+a31*du1[ky]+a32*du2[ky]+a33*du3[ky] + sig*
(u3[nl1][ky][kx+1]-2.0*u3[nl1][ky][kx]+u3[nl1][ky][kx-1]);
}
}
endloop (8);
}
while (count < loop);
/*
*******************************************************************
* Kernel 9 -- integrate predictors
*******************************************************************
*/
parameters (9);
do
{
for ( i=0 ; i<n ; i++ )
{
px[0] = dm28*px[12] + dm27*px[11] + dm26*px[10] +
dm25*px[ 9] + dm24*px[ 8] + dm23*px[ 7] +
dm22*px[ 6] + c0*( px[ 4] + px[ 5])
+ px[ 2];
}
endloop (9);
}
while (count < loop);
/*
*******************************************************************
* Kernel 10 -- difference predictors
*******************************************************************
*/
parameters (10);
do
{
for ( i=0 ; i<n ; i++ )
{
ar = cx[ 4];
br = ar - px[ 4];
px[ 4] = ar;
cr = br - px[ 5];
px[ 5] = br;
ar = cr - px[ 6];
px[ 6] = cr;
br = ar - px[ 7];
px[ 7] = ar;
cr = br - px[ 8];
px[ 8] = br;
ar = cr - px[ 9];
px[ 9] = cr;
br = ar - px[10];
px[10] = ar;
cr = br - px[11];
px[11] = br;
px[13] = cr - px[12];
px[12] = cr;
}
endloop (10);
}
while (count < loop);
/*
*******************************************************************
* Kernel 11 -- first sum
*******************************************************************
*/
parameters (11);
do
{
x[0] = y[0];
for ( k=1 ; k<n ; k++ )
{
x[k] = x[k-1] + y[k];
}
endloop (11);
}
while (count < loop);
/*
*******************************************************************
* Kernel 12 -- first difference
*******************************************************************
*/
parameters (12);
do
{
for ( k=0 ; k<n ; k++ )
{
x[k] = y[k+1] - y[k];
}
endloop (12);
}
while (count < loop);
/*
*******************************************************************
* Kernel 13 -- 2-D PIC (Particle In Cell)
*******************************************************************
*/
parameters (13);
do
{
for ( ip=0; ip<n; ip++)
{
i1 = (long)p[ip][0];
j1 = (long)p[ip][1];
i1 &= 64-1;
j1 &= 64-1;
p[ip][2] += b[j1][i1];
p[ip][3] += c[j1][i1];
p[ip][0] += p[ip][2];
p[ip][1] += p[ip][3];
i2 = (long)p[ip][0];
j2 = (long)p[ip][1];
i2 = ( i2 & 64-1 ) - 1 ;
j2 = ( j2 & 64-1 ) - 1 ;
p[ip][0] += y[i2+32];
p[ip][1] += z[j2+32];
i2 += e[i2+32];
j2 += f[j2+32];
h[j2][i2] += 1.0;
}
endloop (13);
}
while (count < loop);
/*
*******************************************************************
* Kernel 14 -- 1-D PIC (Particle In Cell)
*******************************************************************
*/
parameters (14);
do
{
for ( k=0 ; k<n ; k++ )
{
vx[k] = 0.0;
xx[k] = 0.0;
ix[k] = (long) grd[k];
xi[k] = (double) ix[k];
ex1[k] = ex[ ix[k] - 1 ];
dex1[k] = dex[ ix[k] - 1 ];
}
for ( k=0 ; k<n ; k++ )
{
vx[k] = vx[k] + ex1[k] + ( xx[k] - xi[k] )*dex1[k];
xx[k] = xx[k] + vx[k] + flx;
ir[k] = (long)xx[k];
rx[k] = xx[k] - ir[k];
ir[k] = ( ir[k] & 2048-1 ) + 1;
xx[k] = rx[k] + ir[k];
}
for ( k=0 ; k<n ; k++ )
{
rh[ ir[k]-1 ] += 1.0 - rx[k];
rh[ ir[k] ] += rx[k];
}
endloop (14);
}
while (count < loop);
/*
*******************************************************************
* Kernel 15 -- Casual Fortran. Development version
*******************************************************************
*/
parameters (15);
do
{
ng = 7;
nz = n;
ar = 0.053;
br = 0.073;
for ( j=1 ; j<ng ; j++ )
{
for ( k=1 ; k<nz ; k++ )
{
if ( (j+1) >= ng )
{
vy[j][k] = 0.0;
continue;
}
if ( vh[j+1][k] > vh[j][k] )
{
t = ar;
}
else
{
t = br;
}
if ( vf[j][k] < vf[j][k-1] )
{
if ( vh[j][k-1] > vh[j+1][k-1] )
r = vh[j][k-1];
else
r = vh[j+1][k-1];
s = vf[j][k-1];
}
else
{
if ( vh[j][k] > vh[j+1][k] )
r = vh[j][k];
else
r = vh[j+1][k];
s = vf[j][k];
}
vy[j][k] = sqrt( vg[j][k]*vg[j][k] + r*r )* t/s;
if ( (k+1) >= nz )
{
vs[j][k] = 0.0;
continue;
}
if ( vf[j][k] < vf[j-1][k] )
{
if ( vg[j-1][k] > vg[j-1][k+1] )
r = vg[j-1][k];
else
r = vg[j-1][k+1];
s = vf[j-1][k];
t = br;
}
else
{
if ( vg[j][k] > vg[j][k+1] )
r = vg[j][k];
else
r = vg[j][k+1];
s = vf[j][k];
t = ar;
}
vs[j][k] = sqrt( vh[j][k]*vh[j][k] + r*r )* t / s;
}
}
endloop (15);
}
while (count < loop);
/*
*******************************************************************
* Kernel 16 -- Monte Carlo search loop
*******************************************************************
*/
parameters (16);
ii = n / 3;
lb = ii + ii;
k3 = k2 = 0;
do
{
i1 = m16 = 1;
label410:
j2 = ( n + n )*( m16 - 1 ) + 1;
for ( k=1 ; k<=n ; k++ )
{
k2++;
j4 = j2 + k + k;
j5 = zone[j4-1];
if ( j5 < n )
{
if ( j5+lb < n )
{ /* 420 */
tmp = plan[j5-1] - t; /* 435 */
}
else
{
if ( j5+ii < n )
{ /* 415 */
tmp = plan[j5-1] - s; /* 430 */
}
else
{
tmp = plan[j5-1] - r; /* 425 */
}
}
}
else if( j5 == n )
{
break; /* 475 */
}
else
{
k3++; /* 450 */
tmp=(d[j5-1]-(d[j5-2]*(t-d[j5-3])*(t-d[j5-3])+(s-d[j5-4])*
(s-d[j5-4])+(r-d[j5-5])*(r-d[j5-5])));
}
if ( tmp < 0.0 )
{
if ( zone[j4-2] < 0 ) /* 445 */
continue; /* 470 */
else if ( !zone[j4-2] )
break; /* 480 */
}
else if ( tmp )
{
if ( zone[j4-2] > 0 ) /* 440 */
continue; /* 470 */
else if ( !zone[j4-2] )
break; /* 480 */
}
else break; /* 485 */
m16++; /* 455 */
if ( m16 > zone[0] )
m16 = 1; /* 460 */
if ( i1-m16 ) /* 465 */
goto label410;
else
break;
}
endloop (16);
}
while (count < loop);
/*
*******************************************************************
* Kernel 17 -- implicit, conditional computation
*******************************************************************
*/
parameters (17);
do
{
i = n-1;
j = 0;
ink = -1;
scale = 5.0 / 3.0;
xnm = 1.0 / 3.0;
e6 = 1.03 / 3.07;
goto l61;
l60: e6 = xnm*vsp + vstp;
vxne = e6;
xnm = e6;
ve3 = e6;
i += ink;
if ( i==j ) goto l62;
l61: e3 = xnm*vlr + vlin;
xnei = vxne;
vxnd = e6;
xnc = scale*e3;
if ( xnm > xnc ) goto l60;
if ( xnei > xnc ) goto l60;
ve3 = e3;
e6 = e3 + e3 - xnm;
vxne = e3 + e3 - xnei;
xnm = e6;
i += ink;
if ( i != j ) goto l61;
l62:;
endloop (17);
}
while (count < loop);
/*
*******************************************************************
* Kernel 18 - 2-D explicit hydrodynamics fragment
*******************************************************************
*/
parameters (18);
do
{
t = 0.0037;
s = 0.0041;
kn = 6;
jn = n;
for ( k=1 ; k<kn ; k++ )
{
for ( j=1 ; j<jn ; j++ )
{
za[k][j] = ( zp[k+1][j-1] +zq[k+1][j-1] -zp[k][j-1] -zq[k][j-1] )*
( zr[k][j] +zr[k][j-1] ) / ( zm[k][j-1] +zm[k+1][j-1]);
zb[k][j] = ( zp[k][j-1] +zq[k][j-1] -zp[k][j] -zq[k][j] ) *
( zr[k][j] +zr[k-1][j] ) / ( zm[k][j] +zm[k][j-1]);
}
}
for ( k=1 ; k<kn ; k++ )
{
for ( j=1 ; j<jn ; j++ )
{
zu[k][j] += s*( za[k][j] *( zz[k][j] - zz[k][j+1] ) -
za[k][j-1] *( zz[k][j] - zz[k][j-1] ) -
zb[k][j] *( zz[k][j] - zz[k-1][j] ) +
zb[k+1][j] *( zz[k][j] - zz[k+1][j] ) );
zv[k][j] += s*( za[k][j] *( zr[k][j] - zr[k][j+1] ) -
za[k][j-1] *( zr[k][j] - zr[k][j-1] ) -
zb[k][j] *( zr[k][j] - zr[k-1][j] ) +
zb[k+1][j] *( zr[k][j] - zr[k+1][j] ) );
}
}
for ( k=1 ; k<kn ; k++ )
{
for ( j=1 ; j<jn ; j++ )
{
zr[k][j] = zr[k][j] + t*zu[k][j];
zz[k][j] = zz[k][j] + t*zv[k][j];
}
}
endloop (18);
}
while (count < loop);
/*
*******************************************************************
* Kernel 19 -- general linear recurrence equations
*******************************************************************
*/
parameters (19);
kb5i = 0;
do
{
for ( k=0 ; k<n ; k++ )
{
b5[k+kb5i] = sa[k] + stb5*sb[k];
stb5 = b5[k+kb5i] - stb5;
}
for ( i=1 ; i<=n ; i++ )
{
k = n - i;
b5[k+kb5i] = sa[k] + stb5*sb[k];
stb5 = b5[k+kb5i] - stb5;
}
endloop (19);
}
while (count < loop);
/*
*******************************************************************
* Kernel 20 - Discrete ordinates transport, conditional recurrence on xx
*******************************************************************
*/
parameters (20);
do
{
for ( k=0 ; k<n ; k++ )
{
di = y[k] - g[k] / ( xx[k] + dk );
dn = 0.2;
if ( di )
{
dn = z[k]/di ;
if ( t < dn ) dn = t;
if ( s > dn ) dn = s;
}
x[k] = ( ( w[k] + v[k]*dn )* xx[k] + u[k] ) / ( vx[k] + v[k]*dn );
xx[k+1] = ( x[k] - xx[k] )* dn + xx[k];
}
endloop (20);
}
while (count < loop);
/*
*******************************************************************
* Kernel 21 -- matrix*matrix product
*******************************************************************
*/
parameters (21);
do
{
for ( k=0 ; k<25 ; k++ )
{
for ( i=0 ; i<25 ; i++ )
{
for ( j=0 ; j<n ; j++ )
{
px[j] += vy[k] * cx[j][k];
}
}
}
endloop (21);
}
while (count < loop);
/*
*******************************************************************
* Kernel 22 -- Planckian distribution
*******************************************************************
*/
parameters (22);
expmax = 20.0;
u[n-1] = 0.99*expmax*v[n-1];
do
{
for ( k=0 ; k<n ; k++ )
{
y[k] = u[k] / v[k];
w[k] = x[k] / ( exp( y[k] ) -1.0 );
}
endloop (22);
}
while (count < loop);
/*
*******************************************************************
* Kernel 23 -- 2-D implicit hydrodynamics fragment
*******************************************************************
*/
parameters (23);
do
{
for ( j=1 ; j<6 ; j++ )
{
for ( k=1 ; k<n ; k++ )
{
qa = za[j+1][k]*zr[j][k] + za[j-1][k]*zb[j][k] +
za[j][k+1]*zu[j][k] + za[j][k-1]*zv[j][k] + zz[j][k];
za[j][k] += 0.175*( qa - za[j][k] );
}
}
endloop (23);
}
while (count < loop);
/*
*******************************************************************
* Kernel 24 -- find location of first minimum in array
*******************************************************************
*/
parameters (24);
x[n/2] = -1.0e+10;
do
{
m24 = 0;
for ( k=1 ; k<n ; k++ )
{
if ( x[k] < x[m24] ) m24 = k;
}
endloop (24);
}
while (count < loop);
return;
} // kernels
/************************************************************************
* endloop procedure - calculate checksums and MFLOPS *
************************************************************************/
long endloop(long which)
{
double now = 1.0, useflops;
long i, j, k, m;
double Scale = 1000000.0;
Boolean reinit = TRUE;
Boolean getend = FALSE;
count = count + 1;
if (count >= loop) /* else return */
{
/************************************************************************
* End of standard set of loops for one kernel *
************************************************************************/
count2 = count2 + 1;
if (count2 == extra_loops[section][which]) getend = TRUE;
if (count2 == extra_loops[section][which] || runRel)
/* else re-initialise parameters if required */
{
reinit = FALSE;
/************************************************************************
* End of extra loops for runSecs seconds execution time *
************************************************************************/
Checksum[section][which] = 0;
if (which == 1)
{
for ( k=0 ; k<n ; k++ )
{
Checksum[section][1] = Checksum[section][1] + x[k]
* (double)(k+1);
}
useflops = nflops * (double)(n * loop);
}
if (which == 2)
{
for ( k=0 ; k<n*2 ; k++ )
{
Checksum[section][2] = Checksum[section][2] + x[k]
* (double)(k+1);
}
useflops = nflops * (double)((n-4) * loop);
}
if (which == 3)
{
Checksum[section][3] = q;
useflops = nflops * (double)(n * loop);
}
if (which == 4)
{
for ( k=0 ; k<3 ; k++ )
{
Checksum[section][4] = Checksum[section][4] + v[k]
* (double)(k+1);
}
useflops = nflops * (double) ((((n-5)/5)+1) * 3 * loop);
}
if (which == 5)
{
for ( k=1 ; k<n ; k++ )
{
Checksum[section][5] = Checksum[section][5] + x[k]
* (double)(k);
}
useflops = nflops * (double)((n-1) * loop);
}
if (which == 6)
{
for ( k=0 ; k<n ; k++ )
{
Checksum[section][6] = Checksum[section][6] + w[k]
* (double)(k+1);
}
useflops = nflops * (double)(n * ((n - 1) / 2) * loop);
}
if (which == 7)
{
for ( k=0 ; k<n ; k++ )
{
Checksum[section][7] = Checksum[section][7] + x[k]
* (double)(k+1);
}
useflops = nflops * (double)(n * loop);
}
if (which == 8)
{
for ( i=0 ; i<2 ; i++ )
{
for ( j=0 ; j<LOOPS1 ; j++ )
{
for ( k=0 ; k<5 ; k++ )
{
m = LOOPS1 * 5 * i + 5 * j + k + 1;
if (m < 10 * n + 1)
{
Checksum[section][8] = Checksum[section][8]
+ u1[j][k] * m
+ u2[j][k] * m + u3[j][k] * m;
}
}
}
}
useflops = nflops * (double)(2 * (n - 1) * loop);
}
if (which == 9)
{
for ( i=0 ; i<n ; i++ )
{
for ( j=0 ; j<25 ; j++ )
{
m = 25 * i + j + 1;
if (m < 15 * n + 1)
{
Checksum[section][9] = Checksum[section][9]
+ px[j] * (double)(m);
}
}
}
useflops = nflops * (double)(n * loop);
}
if (which == 10)
{
for ( i=0 ; i<n ; i++ )
{
for (j=0 ; j<25 ; j++ )
{
m = 25 * i + j + 1;
if (m < 15 * n + 1)
{
Checksum[section][10] = Checksum[section][10]
+ px[j] * (double)(m);
}
}
}
useflops = nflops * (double)(n * loop);
}
if (which == 11)
{
for ( k=1 ; k<n ; k++ )
{
Checksum[section][11] = Checksum[section][11]
+ x[k] * (double)(k);
}
useflops = nflops * (double)((n - 1) * loop);
}
if (which == 12)
{
for ( k=0 ; k<n-1 ; k++ )
{
Checksum[section][12] = Checksum[section][12] + x[k]
* (double)(k+1);
}
useflops = nflops * (double)(n * loop);
}
if (which == 13)
{
for ( k=0 ; k<2*n ; k++ )
{
for ( j=0 ; j<4 ; j++ )
{
m = 4 * k + j + 1;
Checksum[section][13] = Checksum[section][13]
+ p[k][j]* (double)(m);
}
}
for ( i=0 ; i<8*n/64 ; i++ )
{
for ( j=0 ; j<64 ; j++ )
{
m = 64 * i + j + 1;
if (m < 8 * n + 1)
{
Checksum[section][13] = Checksum[section][13]
+ h[j] * (double)(m);
}
}
}
useflops = nflops * (double)(n * loop);
}
if (which == 14)
{
for ( k=0 ; k<n ; k++ )
{
Checksum[section][14] = Checksum[section][14]
+ (xx[k] + vx[k]) * (double)(k+1);
}
for ( k=0 ; k<67 ; k++ )
{
Checksum[section][14] = Checksum[section][14] + rh[k]
* (double)(k+1);
}
useflops = nflops * (double)(n * loop);
}
if (which == 15)
{
for ( j=0 ; j<7 ; j++ )
{
for ( k=0 ; k<LOOPS1 ; k++ )
{
m = LOOPS1 * j + k + 1;
if (m < n * 7 + 1)
{
Checksum[section][15] = Checksum[section][15]
+ (vs[j][k] + vy[j][k]) * (double)(m);
}
}
}
useflops = nflops * (double)((n - 1) * 5 * loop);
}
if (which == 16)
{
Checksum[section][16] = (double)(k3 + k2 + j5 + m16);
useflops = (k2 + k2 + 10 * k3);
}
if (which == 17)
{
Checksum[section][17] = xnm;
for ( k=0 ; k<n ; k++ )
{
Checksum[section][17] = Checksum[section][17]
+ (vxne[k] + vxnd[k]) * (double)(k+1);
}
useflops = nflops * (double)(n * loop);
}
if (which == 18)
{
for ( k=0 ; k<7 ; k++ )
{
for ( j=0 ; j<LOOPS1 ; j++ )
{
m = LOOPS1 * k + j + 1;
if (m < 7 * n + 1)
{
Checksum[section][18] = Checksum[section][18]
+ (zz[k][j] + zr[k][j]) * (double)(m);
}
}
}
useflops = nflops * (double)((n - 1) * 5 * loop);
}
if (which == 19)
{
Checksum[section][19] = stb5;
for ( k=0 ; k<n ; k++ )
{
Checksum[section][19] = Checksum[section][19] + b5[k]
* (double)(k+1);
}
useflops = nflops * (double)(n * loop);
}
if (which == 20)
{
for ( k=1 ; k<n+1 ; k++ )
{
Checksum[section][20] = Checksum[section][20] + xx[k]
* (double)(k);
}
useflops = nflops * (double)(n * loop);
}
if (which == 21)
{
for ( k=0 ; k<n ; k++ )
{
for ( i=0 ; i<25 ; i++ )
{
m = 25 * k + i + 1;
Checksum[section][21] = Checksum[section][21]
+ px[k] * (double)(m);
}
}
useflops = nflops * (double)(n * 625 * loop);
}
if (which == 22)
{
for ( k=0 ; k<n ; k++ )
{
Checksum[section][22] = Checksum[section][22] + w[k]
* (double)(k+1);
}
useflops = nflops * (double)(n * loop);
}
if (which == 23)
{
for ( j=0 ; j<7 ; j++ )
{
for ( k=0 ; k<LOOPS1 ; k++ )
{
m = LOOPS1 * j + k + 1;
if (m < 7 * n + 1)
{
Checksum[section][23] = Checksum[section][23]
+ za[j][k] * (double)(m);
}
}
}
useflops = nflops * (double)((n-1) * 5 * loop);
}
if (which == 24)
{
Checksum[section][24] = (double)(m24);
useflops = nflops * (double)((n - 1) * loop);
}
if (runRel) checkOut(which);
if (getend)
{
/************************************************************************
* End of timing *
************************************************************************/
count2 = 0;
//end_time();
s_etime_u32 = SYSTICK_GetTickCounter();
double secs = (s_etime_u32-s_stime_u32)/1000.0;
RunTime[section][which] = secs;
/************************************************************************
* Deduct overheads from time, calculate MFLOPS, display results *
************************************************************************/
RunTime[section][which] = RunTime[section][which]
- (loop * extra_loops[section][which]) * overhead_l;
FPops[section][which] = useflops * extra_loops[section][which];
Mflops[section][which] = FPops[section][which] / Scale
/ RunTime[section][which];
if (pass > 0)
{
/************************************************************************
* Compare sumcheck with standard result, calculate accuracy *
************************************************************************/
check(which);
printf ("%2ld %3ld x%4ld %2ld %13.6e %5.2f%8.2f %4ld %22.15e %2ld\n",
which, xloops[section][which], extra_loops[section][which],
xflops[which], FPops[section][which], RunTime[section][which],
Mflops[section][which], nspan[section][which],
Checksum[section][which], accuracy[section][which]);
if (reliability)
{
if (compareFail)
{
printf(" ERRORS have occurred - see log file\n");
}
}
}
}
}
if (reinit || runRel && !getend)
{
/************************************************************************
* Re-initialise data if reqired *
************************************************************************/
count = 0;
if (which == 2)
{
for ( k=0 ; k<n ; k++ )
{
x[k] = x0[k];
}
}
if (which == 4)
{
m = (LOOPS2-7)/2;
for ( k=6 ; k<LOOPS2 ; k=k+m )
{
x[k] = x0[k];
}
}
if (which == 5)
{
for ( k=0 ; k<n ; k++ )
{
x[k] = x0[k];
}
}
if (which == 6)
{
for ( k=0 ; k<n ; k++ )
{
w[k] = w0[k];
}
}
if (which == 10)
{
for ( i=0 ; i<n ; i++ )
{
for (j=4 ; j<13 ; j++ )
{
px[j] = px0[j];
}
}
}
if (which == 13)
{
for ( i=0 ; i<n ; i++ )
{
for (j=0 ; j<4 ; j++ )
{
p[j] = p0[j];
}
}
for ( i=0 ; i<64 ; i++ )
{
for (j=0 ; j<64 ; j++ )
{
h[j] = h0[j];
}
}
}
if (which == 14)
{
for ( i=0; i<n ; i++ )
{
rh[ir - 1] = rh0[ir - 1];
rh[ir ] = rh0[ir ];
}
}
if (which == 17)
{
for ( i=0; i<n ; i++ )
{
vxne = vxne0;
}
}
if (which == 18)
{
for ( i=1 ; i<6 ; i++ )
{
for (j=1 ; j<n ; j++ )
{
zr[j] = zr0[j];
zu[j] = zu0[j];
zv[j] = zv0[j];
zz[j] = zz0[j];
}
}
}
if (which == 21)
{
for ( i=0 ; i<n ; i++ )
{
for (j=0 ; j<25 ; j++ )
{
px[j] = px0[j];
}
}
}
if (which == 23)
{
for ( i=1 ; i<6 ; i++ )
{
for (j=1 ; j<n ; j++ )
{
za[j] = za0[j];
}
}
}
k3 = k2 = 0;
stb5 = stb50;
xx[0] = xx0;
}
}
return 0;
} // endloop
/************************************************************************
* init procedure - initialises data for all loops *
************************************************************************/
void init(long which)
{
long i, j, k, l, m, nn;
double ds, dw, rr, ss;
double fuzz, fizz, buzz, scaled, one;
scaled = (double)(10.0);
scaled = (double)(1.0) / scaled;
fuzz = (double)(0.0012345);
buzz = (double)(1.0) + fuzz;
fizz = (double)(1.1) * fuzz;
one = (double)(1.0);
//for ( k=0 ; k<19977 + 34132 ; k++)
for ( k=0 ; k<LOOPS2 ; k++)
{
if (k == 19977)
{
fuzz = (double)(0.0012345);
buzz = (double) (1.0) + fuzz;
fizz = (double) (1.1) * fuzz;
}
buzz = (one - fuzz) * buzz + fuzz;
fuzz = - fuzz;
u[k] = (buzz - fizz) * scaled;
}
fuzz = (double)(0.0012345);
buzz = (double) (1.0) + fuzz;
fizz = (double) (1.1) * fuzz;
for ( k=1 ; k<40 ; k++)
{
buzz = (one - fuzz) * buzz + fuzz;
fuzz = - fuzz;
xtra[k] = (buzz - fizz) * scaled;
}
ds = 1.0;
dw = 0.5;
for ( l=0 ; l<4 ; l++ )
{
for ( i=0 ; i<512 ; i++ )
{
p[l] = ds;
ds = ds + dw;
}
}
for ( i=0 ; i<96 ; i++ )
{
e = 1;
f = 1;
}
iqranf();
dw = -100.0;
for ( i=0; i<LOOPS2 ; i++ )
{
dex = dw * dex;
grd = ix;
}
flx = 0.001;
d[0]= 1.01980486428764;
nn = n16;
for ( l=1 ; l<300 ; l++ )
{
d[l] = d[l-1] + 1.000e-4 / d[l-1];
}
rr = d[nn-1];
for ( l=1 ; l<=2 ; l++ )
{
m = (nn+nn)*(l-1);
for ( j=1 ; j<=2 ; j++ )
{
for ( k=1 ; k<=nn ; k++ )
{
m = m + 1;
ss = (double)(k);
plan[m-1] = rr * ((ss + 1.0) / ss);
zone[m-1] = k + k;
}
}
}
k = nn + nn + 1;
zone[k-1] = nn;
if (which == 16)
{
r = d[n-1];
s = d[n-2];
t = d[n-3];
k3 = k2 = 0;
}
expmax = 20.0;
if (which == 22)
{
u[n-1] = 0.99*expmax*v[n-1];
}
if (which == 24)
{
x[n/2] = -1.0e+10;
}
/************************************************************************
* Make copies of data for extra loops *
************************************************************************/
for ( i=0; i<LOOPS2 ; i++ )
{
x0 = x;
w0 = w;
}
for ( i=0 ; i<LOOPS1 ; i++ )
{
for (j=0 ; j<25 ; j++ )
{
px0[j] = px[j];
}
}
for ( i=0 ; i<512 ; i++ )
{
for (j=0 ; j<4 ; j++ )
{
p0[j] = p[j];
}
}
for ( i=0 ; i<64 ; i++ )
{
for (j=0 ; j<64 ; j++ )
{
h0[j] = h[j];
}
}
for ( i=0; i<2048 ; i++ )
{
rh0 = rh;
}
for ( i=0; i<LOOPS1 ; i++ )
{
vxne0 = vxne;
}
for ( i=0 ; i<7 ; i++ )
{
for (j=0 ; j<LOOPS1 ; j++ )
{
zr0[j] = zr[j];
zu0[j] = zu[j];
zv0[j] = zv[j];
zz0[j] = zz[j];
za0[j] = za[j];
}
}
stb50 = stb5;
xx0 = xx[0];
return;
}
/************************************************************************
* parameters procedure for loop counts, Do spans, sumchecks, FLOPS *
************************************************************************/
long parameters(long which)
{
long nloops[3][25] =
{ {0, LOOPS2, LOOPS1, LOOPS2, LOOPS2, LOOPS2, 64, 995, LOOPS4,
LOOPS1, LOOPS1, LOOPS2, LOOPS3, 64, LOOPS2, LOOPS1, 75,
LOOPS1, LOOPS4, LOOPS1, LOOPS3, LOOPS1, LOOPS1, LOOPS4, LOOPS2 },
{0, LOOPS1, LOOPS1, LOOPS1, LOOPS1, LOOPS1, 32, LOOPS1, LOOPS4,
LOOPS1, LOOPS1, LOOPS1, LOOPS4, 32, LOOPS1, LOOPS1, 40,
LOOPS1, LOOPS4, LOOPS1, LOOPS4, 50, LOOPS1, 100, LOOPS1 },
{0, 27, 15, 27, 27, 27, 8, 21, 14,
15, 15, 27, 26, 8, 27, 15, 15,
15, 14, 15, 26, 20, 15, 14, 27 } };
long lpass[3][25] =
{ {0, 7, 67, 9, 14, 10, 3, 4, 10, 36, 34, 11, 12,
36, 2, 1, 25, 35, 2, 39, 1, 1, 11, 8, 5 },
{0, 40, 40, 53, 70, 55, 7, 22, 6, 21, 19, 64, 68,
41, 10, 1, 27, 20, 1, 23, 8, 1, 7, 5, 31 },
{0, 28, 46, 37, 38, 40, 21, 20, 9, 26, 25, 46, 48,
31, 8, 1, 14, 26, 2, 28, 7, 1, 8, 7, 23 } };
double sums[3][25] =
{
{ 0.0,
5.114652693224671e+04, 1.539721811668385e+03, 1.000742883066363e+01,
5.999250595473891e-01, 4.548871642387267e+03, 4.375116344729986e+03,
6.104251075174761e+04, 1.501268005625798e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.342910972650109e+07, 2.907141294167248e-05,
1.202533961842803e+11, 3.165553044000334e+09, 3.943816690352042e+04,
5.650760000000000e+05, 1.114641772902486e+03, 1.015727037502300e+05,
5.421816960147207e+02, 3.040644339351239e+07, 1.597308280710199e+08,
2.938604376566697e+02, 3.549900501563623e+04, 5.000000000000000e+02
},
{ 0.0,
5.253344778937972e+02, 1.539721811668385e+03, 1.009741436578952e+00,
5.999250595473891e-01, 4.589031939600982e+01, 8.631675645333210e+01,
6.345586315784055e+02, 1.501268005625798e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.433560407475758e+04, 7.127569130821465e-06,
9.816387810944345e+10, 3.039983465145393e+07, 3.943816690352042e+04,
6.480410000000000e+05, 1.114641772902486e+03, 1.015727037502300e+05,
5.421816960147207e+02, 3.126205178815431e+04, 7.824524877232093e+07,
2.938604376566697e+02, 3.549900501563623e+04, 5.000000000000000e+01
},
{ 0.0,
3.855104502494961e+01, 3.953296986903059e+01, 2.699309089320672e-01,
5.999250595473891e-01, 3.182615248447483e+00, 1.120309393467088e+00,
2.845720217644024e+01, 2.960543667875003e+03, 2.623968460874250e+03,
1.651291227698265e+03, 6.551161335845770e+02, 1.943435981130448e-06,
3.847124199949426e+10, 2.923540598672011e+06, 1.108997288134785e+03,
5.152160000000000e+05, 2.947368618589360e+01, 9.700646212337040e+02,
1.268230698051003e+01, 5.987713249475302e+02, 5.009945671204667e+07,
6.109968728263972e+00, 4.850340602749970e+02, 1.300000000000000e+01
} };
double number_flops[25] = {0, 5., 4., 2., 2., 2., 2., 16., 36., 17.,
9., 1., 1., 7., 11., 33.,10., 9., 44.,
6., 26., 2., 17., 11., 1.};
double now = 1.0;
n = nloops[section][which];
nspan[section][which] = n;
n16 = nloops[section][16];
nflops = number_flops[which];
xflops[which] = (long)nflops;
loop = lpass[section][which];
xloops[section][which] = loop;
loop = loop * mult;
MasterSum = sums[section][which];
count = 0;
init(which);
/************************************************************************
* Start timing first pass only *
************************************************************************/
if (count2 == 0)
{
//start_time();
s_stime_u32 = SYSTICK_GetTickCounter();
}
return 0;
} // parameters
/************************************************************************
* check procedure to check accuracy of calculations *
************************************************************************/
void check(long which)
{
long maxs = 16;
double xm, ym, re, min1, max1;
xm = MasterSum;
ym = Checksum[section][which];
if (xm * ym < 0.0)
{
accuracy[section][which] = 0;
}
else
{
if ( xm == ym)
{
accuracy[section][which] = maxs;
}
else
{
xm = fabs(xm);
ym = fabs(ym);
min1 = xm;
max1 = ym;
if (ym < xm)
{
min1 = ym;
max1 = xm;
}
re = 1.0 - min1 / max1;
accuracy[section][which] =
(long)( fabs(log10(fabs(re))) + 0.5);
}
}
return;
}
/************************************************************************
* iqranf procedure - random number generator for Kernel 14 *
************************************************************************/
void iqranf()
{
long inset, Mmin, Mmax, nn, i, kk;
double span, spin, realn, per, scale1, qq, dkk, dp, dq;
long seed[3] = { 256, 12491249, 1499352848 };
nn = LOOPS2;
Mmin = 1;
Mmax = LOOPS2;
kk = seed[section];
inset= Mmin;
span= Mmax - Mmin;
spin= 16807;
per= 2147483647;
realn= nn;
scale1= 1.00001;
qq= scale1 * (span / realn);
dkk= kk;
for ( i=0 ; i<nn ; i++)
{
dp= dkk*spin;
dkk= dp - (long)( dp/per)*per;
dq= dkk*span;
ix = inset + (long)( dq/ per);
if ((ix < Mmin) | (ix > Mmax))
{
ix = inset + i + 1 * (long)qq;
}
}
return;
}
void checkOut(int which)
{
int i, j;
int errors = 0;
char chek1[30];
char chek2[30];
/*
// Values Watcom
double sumsOut[3][25] =
{
{ 0.0,
5.114652693224671e+04, 1.539721811668384e+03, 1.000742883066364e+01,
5.999250595473891e-01, 4.548871642387267e+03, 4.375116344729986e+03,
6.104251075174761e+04, 1.501268005625795e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.342910972650109e+07, 2.907141294167248e-05,
1.202533961842804e+11, 3.165553044000335e+09, 3.943816690352044e+04,
5.650760000000000e+05, 1.114641772902486e+03, 1.015727037502299e+05,
5.421816960147207e+02, 3.040644339351238e+07, 1.597308280710200e+08,
2.938604376566698e+02, 3.549900501563624e+04, 5.000000000000000e+02
},
{ 0.0,
5.253344778937972e+02, 1.539721811668384e+03, 1.009741436578952e+00,
5.999250595473891e-01, 4.589031939600982e+01, 8.631675645333210e+01,
6.345586315784055e+02, 1.501268005625795e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.433560407475758e+04, 7.127569130821465e-06,
9.816387810944356e+10, 3.039983465145392e+07, 3.943816690352044e+04,
6.480410000000000e+05, 1.114641772902486e+03, 1.015727037502299e+05,
5.421816960147207e+02, 3.126205178815432e+04, 7.824524877232093e+07,
2.938604376566698e+02, 3.549900501563624e+04, 5.000000000000000e+01
},
{ 0.0,
3.855104502494961e+01, 3.953296986903060e+01, 2.699309089320672e-01,
5.999250595473891e-01, 3.182615248447483e+00, 1.120309393467088e+00,
2.845720217644024e+01, 2.960543667875005e+03, 2.623968460874250e+03,
1.651291227698265e+03, 6.551161335845770e+02, 1.943435981130448e-06,
3.847124199949431e+10, 2.923540598672009e+06, 1.108997288134785e+03,
5.152160000000000e+05, 2.947368618589360e+01, 9.700646212337040e+02,
1.268230698051004e+01, 5.987713249475302e+02, 5.009945671204667e+07,
6.109968728263973e+00, 4.850340602749970e+02, 1.300000000000000e+01
}
};
// Values MS Visual C++
double sumsOut[3][25] =
{
{ 0.0,
5.114652693224671e+04, 1.539721811668385e+03, 1.000742883066364e+01,
5.999250595473891e-01, 4.548871642387267e+03, 4.375116344729986e+03,
6.104251075174761e+04, 1.501268005625799e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.342910972650109e+07, 2.907141294167248e-05,
1.202533961842805e+11, 3.165553044000335e+09, 3.943816690352044e+04,
5.650760000000000e+05, 1.114641772902486e+03, 1.015727037502299e+05,
5.421816960147207e+02, 3.040644339351239e+07, 1.597308280710200e+08,
2.938604376566698e+02, 3.549900501563623e+04, 5.000000000000000e+02
},
{ 0.0,
5.253344778937972e+02, 1.539721811668385e+03, 1.009741436578952e+00,
5.999250595473891e-01, 4.589031939600982e+01, 8.631675645333210e+01,
6.345586315784055e+02, 1.501268005625799e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.433560407475758e+04, 7.127569130821465e-06,
9.816387810944356e+10, 3.039983465145392e+07, 3.943816690352044e+04,
6.480410000000000e+05, 1.114641772902486e+03, 1.015727037502299e+05,
5.421816960147207e+02, 3.126205178815431e+04, 7.824524877232093e+07,
2.938604376566698e+02, 3.549900501563623e+04, 5.000000000000000e+01
},
{ 0.0,
3.855104502494961e+01, 3.953296986903060e+01, 2.699309089320672e-01,
5.999250595473891e-01, 3.182615248447483e+00, 1.120309393467088e+00,
2.845720217644024e+01, 2.960543667875003e+03, 2.623968460874251e+03,
1.651291227698265e+03, 6.551161335845770e+02, 1.943435981130448e-06,
3.847124199949431e+10, 2.923540598672009e+06, 1.108997288134785e+03,
5.152160000000000e+05, 2.947368618589361e+01, 9.700646212337041e+02,
1.268230698051004e+01, 5.987713249475302e+02, 5.009945671204667e+07,
6.109968728263973e+00, 4.850340602749970e+02, 1.300000000000000e+01
}
};
*/
/*
// Values Ubuntu GCC
// (opt == 0)
double sumsOut[3][25] =
{
{ 0.0,
5.114652693224700e+04, 1.539721811668511e+03, 1.000742883066627e+01,
5.999250595474077e-01, 4.548871642388569e+03, 4.375116344743279e+03,
6.104251075174964e+04, 1.501268005627179e+05, 1.189443609975087e+05,
7.310369784325996e+04, 3.342910972650542e+07, 2.907141426432280e-05,
1.202533961843102e+11, 3.165553044001659e+09, 3.943816690352318e+04,
5.650760000000000e+05, 1.114641772903105e+03, 1.015727037502807e+05,
5.421816960150461e+02, 3.040644339316077e+07, 1.597308280710881e+08,
2.938604376567110e+02, 3.549900501566216e+04, 5.000000000000000e+02
},
{ 0.0,
5.253344778938000e+02, 1.539721811668511e+03, 1.009741436579191e+00,
5.999250595474077e-01, 4.589031939602152e+01, 8.631675645346239e+01,
6.345586315784147e+02, 1.501268005627179e+05, 1.189443609975087e+05,
7.310369784325996e+04, 3.433560407476172e+04, 7.127569142936774e-06,
9.816387817138181e+10, 3.039983465147583e+07, 3.943816690352318e+04,
6.480410000000000e+05, 1.114641772903105e+03, 1.015727037502807e+05,
5.421816960150461e+02, 3.126205178810877e+04, 7.824524877235231e+07,
2.938604376567110e+02, 3.549900501566216e+04, 5.000000000000000e+01
},
{ 0.0,
3.855104502494983e+01, 3.953296986903390e+01, 2.699309089321306e-01,
5.999250595474077e-01, 3.182615248448286e+00, 1.120309393467609e+00,
2.845720217644062e+01, 2.960543667877695e+03, 2.623968460874420e+03,
1.651291227698378e+03, 6.551161335846556e+02, 1.943435981782704e-06,
3.847124173932957e+10, 2.923540598700804e+06, 1.108997288135077e+03,
5.152160000000000e+05, 2.947368618590745e+01, 9.700646212341645e+02,
1.268230698051762e+01, 5.987713249471701e+02, 5.009945671206634e+07,
6.109968728264812e+00, 4.850340602751722e+02, 1.300000000000000e+01
}
};
// Values Ubuntu GCC
// (opt == 2)
double sumsOut[3][25] =
{
{ 0.0,
5.114652693224706e+04, 1.539721811668509e+03, 1.000742883066623e+01,
5.999250595474070e-01, 4.548871642388545e+03, 4.375116344743014e+03,
6.104251075174961e+04, 1.501268005627157e+05, 1.189443609975086e+05,
7.310369784325988e+04, 3.342910972650532e+07, 2.907141429123183e-05,
1.202533961843096e+11, 3.165553044001604e+09, 3.943816690352310e+04,
5.650760000000000e+05, 1.114641772903092e+03, 1.015727037502793e+05,
5.421816960150400e+02, 3.040644339317274e+07, 1.597308280710857e+08,
2.938604376567100e+02, 3.549900501566157e+04, 5.000000000000000e+02
},
{ 0.0,
5.253344778938001e+02, 1.539721811668509e+03, 1.009741436579188e+00,
5.999250595474070e-01, 4.589031939602133e+01, 8.631675645345986e+01,
6.345586315784150e+02, 1.501268005627157e+05, 1.189443609975086e+05,
7.310369784325988e+04, 3.433560407476163e+04, 7.127569145018442e-06,
9.816387817138104e+10, 3.039983465147494e+07, 3.943816690352310e+04,
6.480410000000000e+05, 1.114641772903092e+03, 1.015727037502793e+05,
5.421816960150400e+02, 3.126205178811007e+04, 7.824524877235141e+07,
2.938604376567100e+02, 3.549900501566157e+04, 5.000000000000000e+01
},
{ 0.0,
3.855104502494984e+01, 3.953296986903387e+01, 2.699309089321297e-01,
5.999250595474070e-01, 3.182615248448272e+00, 1.120309393467599e+00,
2.845720217644062e+01, 2.960543667877650e+03, 2.623968460874420e+03,
1.651291227698377e+03, 6.551161335846538e+02, 1.943435981782704e-06,
3.847124173932906e+10, 2.923540598699676e+06, 1.108997288135067e+03,
5.152160000000000e+05, 2.947368618590714e+01, 9.700646212341514e+02,
1.268230698051747e+01, 5.987713249471802e+02, 5.009945671206567e+07,
6.109968728264795e+00, 4.850340602751676e+02, 1.300000000000000e+01
}
};
// Values Ubuntu GCC
// (opt == 3)
double sumsOut[3][25] =
{
{ 0.0,
5.114652693224706e+04, 1.539721811668509e+03, 1.000742883066623e+01,
5.999250595474070e-01, 4.548871642388545e+03, 4.375116344743014e+03,
6.104251075174961e+04, 1.501268005627157e+05, 1.189443609975086e+05,
7.310369784325988e+04, 3.342910972650531e+07, 2.907141429123183e-05,
1.202533961843096e+11, 3.165553044001604e+09, 3.943816690352310e+04,
5.650760000000000e+05, 1.114641772903092e+03, 1.015727037502793e+05,
5.421816960150400e+02, 3.040644339317274e+07, 1.597308280710857e+08,
2.938604376567100e+02, 3.549900501566157e+04, 5.000000000000000e+02
},
{ 0.0,
5.253344778938001e+02, 1.539721811668509e+03, 1.009741436579188e+00,
5.999250595474070e-01, 4.589031939602133e+01, 8.631675645345986e+01,
6.345586315784150e+02, 1.501268005627157e+05, 1.189443609975086e+05,
7.310369784325988e+04, 3.433560407476163e+04, 7.127569145018442e-06,
9.816387817138106e+10, 3.039983465147494e+07, 3.943816690352310e+04,
6.480410000000000e+05, 1.114641772903092e+03, 1.015727037502793e+05,
5.421816960150400e+02, 3.126205178811007e+04, 7.824524877235141e+07,
2.938604376567100e+02, 3.549900501566157e+04, 5.000000000000000e+01
},
{ 0.0,
3.855104502494984e+01, 3.953296986903387e+01, 2.699309089321297e-01,
5.999250595474070e-01, 3.182615248448272e+00, 1.120309393467599e+00,
2.845720217644062e+01, 2.960543667877650e+03, 2.623968460874420e+03,
1.651291227698377e+03, 6.551161335846538e+02, 1.943435981782704e-06,
3.847124173932906e+10, 2.923540598699676e+06, 1.108997288135067e+03,
5.152160000000000e+05, 2.947368618590714e+01, 9.700646212341514e+02,
1.268230698051747e+01, 5.987713249471802e+02, 5.009945671206567e+07,
6.109968728264795e+00, 4.850340602751676e+02, 1.300000000000000e+01
}
};
*/
// Values Ubuntu GCC 64 Bit
double sumsOut[3][25] =
{
{ 0.0,
5.114652693224671e+04, 1.539721811668385e+03, 1.000742883066363e+01,
5.999250595473891e-01, 4.548871642387267e+03, 4.375116344729986e+03,
6.104251075174761e+04, 1.501268005625795e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.342910972650109e+07, 2.907141294167248e-05,
1.202533961842805e+11, 3.165553044000335e+09, 3.943816690352044e+04,
5.650760000000000e+05, 1.114641772902486e+03, 1.015727037502299e+05,
5.421816960147207e+02, 3.040644339351239e+07, 1.597308280710199e+08,
2.938604376566697e+02, 3.549900501563623e+04, 5.000000000000000e+02
},
{ 0.0,
5.253344778937972e+02, 1.539721811668385e+03, 1.009741436578952e+00,
5.999250595473891e-01, 4.589031939600982e+01, 8.631675645333210e+01,
6.345586315784055e+02, 1.501268005625795e+05, 1.189443609974981e+05,
7.310369784325296e+04, 3.433560407475758e+04, 7.127569130821465e-06,
9.816387810944356e+10, 3.039983465145392e+07, 3.943816690352044e+04,
6.480410000000000e+05, 1.114641772902486e+03, 1.015727037502299e+05,
5.421816960147207e+02, 3.126205178815431e+04, 7.824524877232093e+07,
2.938604376566697e+02, 3.549900501563623e+04, 5.000000000000000e+01
},
{ 0.0,
3.855104502494961e+01, 3.953296986903059e+01, 2.699309089320672e-01,
5.999250595473891e-01, 3.182615248447483e+00, 1.120309393467088e+00,
2.845720217644024e+01, 2.960543667875005e+03, 2.623968460874250e+03,
1.651291227698265e+03, 6.551161335845770e+02, 1.943435981130448e-06,
3.847124199949431e+10, 2.923540598672009e+06, 1.108997288134785e+03,
5.152160000000000e+05, 2.947368618589361e+01, 9.700646212337041e+02,
1.268230698051003e+01, 5.987713249475302e+02, 5.009945671204667e+07,
6.109968728263972e+00, 4.850340602749970e+02, 1.300000000000000e+01
}
};
if (reliability)
{
i = section;
j = which;
if (count2 == 1)
{
failCount = 0;
sumscomp[j] = sumsOut[j];
sprintf(chek1, "%22.15e", Checksum[j]);
sprintf(chek2, "%22.15e", sumscomp[j]);
if (strcmp (chek1, chek2) != 0)
{
nsRes = TRUE;
sumscomp[j] = Checksum[j];
fprintf(outfile, " Section %d Test %2d pass %5ld Non-standard result was %s expected %s\n",
i+1, j, count2, chek1, chek2);
}
}
else
{
sprintf(chek1, "%22.15e", Checksum[j]);
sprintf(chek2, "%22.15e", sumscomp[j]);
if (strcmp (chek1, chek2) != 0)
{
compareFail = compareFail + 1;
failCount = failCount + 1;
if (compareFail == 1)
{
fprintf(outfile, " ERRORS - maximum of 5 reported per loop\n");
}
if (failCount < 6)
{
fprintf(outfile, " Section %d Test %2d pass %5ld Different result was %s expected %s\n",
i+1, j, count2, chek1, chek2);
fflush(outfile);
}
}
}
}
else
{
for (i=0; i<3; i++)
{
for (j=1; j<25; j++)
{
sprintf(chek1, "%22.15e", Checksum[j]);
sprintf(chek2, "%22.15e", sumsOut[j]);
if (strcmp (chek1, chek2) != 0)
{
errors = errors + 1;
fprintf(outfile, " Section %d Test %2d Non-standard result was %s expected %s\n",
i+1, j, chek1, chek2);
}
}
}
if (errors == 0)
{
fprintf(outfile, " Numeric results were as expected\n");
}
fprintf(outfile, "\n");
}
}
|
|