3286|1

79

帖子

3

TA的资源

一粒金砂(中级)

楼主
 

【2022得捷创新设计大赛】项目分享帖之二:Emwin5.28在 stm32f7 官方开发板上的移植 [复制链接]

 

一、介绍 emWin
    GUI 库很多,emWin在STM32,NXP上大显身手。emWin的前身UCGUI,而UCGUI 的高级版本就是 emWin, 而 STemWin 是SEGGER 授权给 ST 的 emWin 版本,ST的芯片可以免费使用 STemWin,而且 STemWin 针对 ST 的芯片做了优化。

二、emWin 支持平台
emWin 支持的硬件平台非常广泛,支持几乎所有的 16 位或 32 位微控制器,从 ARM7、ARM9 到 Cortex-M3、Cortex-M4、Cortex-M7 再到 Cortex-A9 都能运行,甚至在 Cortex-M0上也能跑。

emWin 常用配套的软件工具:
BmpCvtST:位图转换器。它将常见的图像文件格式(如BMP,GIF和PNG)转换为所需的emWin位图格式。--File->Save As将图片数据保存为.c文件
FontCvtST:字体转换器。将字符字体转换成.c文件。Extended
GUIBuilder:界面编辑器。 用于显示界面的前期设计,或在不了解 C 语言的情况
下设计界面。 emWin的小部件在GUIBuilder可以直接通过拖放来放置和调整大小,而不必编写源代码。可以按上下文菜单添加其他属性,可以通过编辑小部件的属性来微调。 设计好的界面可以保存为 C 文件,直接添加进工程中使用,但是界面的交互逻辑需要用户自定义的代码来实现。

三、emWin 可视化工具AppWizard

下面进行移植:

     开发板搭载的16MB SDRAM芯片MT48LC4M32B2B5-6A,F7和F4系的FMC一样,一共6个bank区,开发板上的sdram位于SDRAM Bank1,因此在cubemx中选择SDCKE0+SDNE0,查看MT48LC4M32B2B5数据手册可知其容量大小为4 Meg x 32 (1 Meg x 32 x 4 banks),即128Mb(16MB),但是由于板上数据线只用到16位,可用实际大小只有8MB,将sdram配置如图所示(根据数据手册确定相关参数)。


#include "sdram.h"

static SDRAM_HandleTypeDef sdramHandle;
static FMC_SDRAM_TimingTypeDef Timing;
static FMC_SDRAM_CommandTypeDef Command;

/**
  * [url=home.php?mod=space&uid=159083]@brief[/url] Initializes SDRAM MSP.
  * @param  hsdram: SDRAM handle
  * @param  Params
  * @retval None
  */
void SDRAM_MspInit(SDRAM_HandleTypeDef  *hsdram, void *Params)
{  
	static DMA_HandleTypeDef dma_handle;
	GPIO_InitTypeDef gpio_init_structure;

	/* Enable FMC clock */
	__HAL_RCC_FMC_CLK_ENABLE();

	/* Enable chosen DMAx clock */
	__DMAx_CLK_ENABLE();

	/* Enable GPIOs clock */
	__HAL_RCC_GPIOC_CLK_ENABLE();
	__HAL_RCC_GPIOD_CLK_ENABLE();
	__HAL_RCC_GPIOE_CLK_ENABLE();
	__HAL_RCC_GPIOF_CLK_ENABLE();
	__HAL_RCC_GPIOG_CLK_ENABLE();
	__HAL_RCC_GPIOH_CLK_ENABLE();

	/* Common GPIO configuration */
	gpio_init_structure.Mode      = GPIO_MODE_AF_PP;
	gpio_init_structure.Pull      = GPIO_PULLUP;
	gpio_init_structure.Speed     = GPIO_SPEED_FAST;
	gpio_init_structure.Alternate = GPIO_AF12_FMC;

	/* GPIOC configuration */
	gpio_init_structure.Pin   = GPIO_PIN_3;
	HAL_GPIO_Init(GPIOC, &gpio_init_structure);

	/* GPIOD configuration */
	gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_8 | GPIO_PIN_9 |
								GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15;
	HAL_GPIO_Init(GPIOD, &gpio_init_structure);

	/* GPIOE configuration */  
	gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7| GPIO_PIN_8 | GPIO_PIN_9 |\
								GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\
								GPIO_PIN_15;
	HAL_GPIO_Init(GPIOE, &gpio_init_structure);

	/* GPIOF configuration */  
	gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\
								GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\
								GPIO_PIN_15;
	HAL_GPIO_Init(GPIOF, &gpio_init_structure);

	/* GPIOG configuration */  
	gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4| GPIO_PIN_5 | GPIO_PIN_8 |\
								GPIO_PIN_15;
	HAL_GPIO_Init(GPIOG, &gpio_init_structure);

	/* GPIOH configuration */  
	gpio_init_structure.Pin   = GPIO_PIN_3 | GPIO_PIN_5;
	HAL_GPIO_Init(GPIOH, &gpio_init_structure); 

	/* Configure common DMA parameters */
	dma_handle.Init.Channel             = SDRAM_DMAx_CHANNEL;
	dma_handle.Init.Direction           = DMA_MEMORY_TO_MEMORY;
	dma_handle.Init.PeriphInc           = DMA_PINC_ENABLE;
	dma_handle.Init.MemInc              = DMA_MINC_ENABLE;
	dma_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
	dma_handle.Init.MemDataAlignment    = DMA_MDATAALIGN_WORD;
	dma_handle.Init.Mode                = DMA_NORMAL;
	dma_handle.Init.Priority            = DMA_PRIORITY_HIGH;
	dma_handle.Init.FIFOMode            = DMA_FIFOMODE_DISABLE;         
	dma_handle.Init.FIFOThreshold       = DMA_FIFO_THRESHOLD_FULL;
	dma_handle.Init.MemBurst            = DMA_MBURST_SINGLE;
	dma_handle.Init.PeriphBurst         = DMA_PBURST_SINGLE; 

	dma_handle.Instance = SDRAM_DMAx_STREAM;

	/* Associate the DMA handle */
	__HAL_LINKDMA(hsdram, hdma, dma_handle);

	/* Deinitialize the stream for new transfer */
	HAL_DMA_DeInit(&dma_handle);

	/* Configure the DMA stream */
	HAL_DMA_Init(&dma_handle); 

	/* NVIC configuration for DMA transfer complete interrupt */
	HAL_NVIC_SetPriority(SDRAM_DMAx_IRQn, 5, 0);
	HAL_NVIC_EnableIRQ(SDRAM_DMAx_IRQn);
}

/**
  * @brief  Programs the SDRAM device.
  * @param  RefreshCount: SDRAM refresh counter value 
  * @retval None
  */
void SDRAM_Initialization_sequence(uint32_t RefreshCount)
{
	__IO uint32_t tmpmrd = 0;

	/* Step 1: Configure a clock configuration enable command */
	Command.CommandMode            = FMC_SDRAM_CMD_CLK_ENABLE;
	Command.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
	Command.AutoRefreshNumber      = 1;
	Command.ModeRegisterDefinition = 0;

	/* Send the command */
	HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);

	/* Step 2: Insert 100 us minimum delay */ 
	/* Inserted delay is equal to 1 ms due to systick time base unit (ms) */
	HAL_Delay(1);

	/* Step 3: Configure a PALL (precharge all) command */ 
	Command.CommandMode            = FMC_SDRAM_CMD_PALL;
	Command.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
	Command.AutoRefreshNumber      = 1;
	Command.ModeRegisterDefinition = 0;

	/* Send the command */
	HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);  

	/* Step 4: Configure an Auto Refresh command */ 
	Command.CommandMode            = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
	Command.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
	Command.AutoRefreshNumber      = 8;
	Command.ModeRegisterDefinition = 0;

	/* Send the command */
	HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);

	/* Step 5: Program the external memory mode register */
	tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1          |\
					   SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL   |\
					   SDRAM_MODEREG_CAS_LATENCY_2           |\
					   SDRAM_MODEREG_OPERATING_MODE_STANDARD |\
					   SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;

	Command.CommandMode            = FMC_SDRAM_CMD_LOAD_MODE;
	Command.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
	Command.AutoRefreshNumber      = 1;
	Command.ModeRegisterDefinition = tmpmrd;

	/* Send the command */
	HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);

	/* Step 6: Set the refresh rate counter */
	/* Set the device refresh rate */
	HAL_SDRAM_ProgramRefreshRate(&sdramHandle, RefreshCount); 
}

/*******************************************************************************
* Function Name  : SDRAM_Init
* Description    : SDRAM初始化
* Input          : None
* Output         : None
* Return         : None
* Note			 : None
*******************************************************************************/
uint8_t SDRAM_Init(void)
{ 
	static uint8_t sdramstatus = SDRAM_ERROR;

	/* SDRAM device configuration */
	sdramHandle.Instance = FMC_SDRAM_DEVICE;

	/* Timing configuration for 100Mhz as SD clock frequency (System clock is up to 200Mhz) */
	Timing.LoadToActiveDelay    = 2;
	Timing.ExitSelfRefreshDelay = 7;
	Timing.SelfRefreshTime      = 4;
	Timing.RowCycleDelay        = 7;
	Timing.WriteRecoveryTime    = 2;
	Timing.RPDelay              = 2;
	Timing.RCDDelay             = 2;

	sdramHandle.Init.SDBank             = FMC_SDRAM_BANK1;
	sdramHandle.Init.ColumnBitsNumber   = FMC_SDRAM_COLUMN_BITS_NUM_8;
	sdramHandle.Init.RowBitsNumber      = FMC_SDRAM_ROW_BITS_NUM_12;
	sdramHandle.Init.MemoryDataWidth    = SDRAM_MEMORY_WIDTH;
	sdramHandle.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
	sdramHandle.Init.CASLatency         = FMC_SDRAM_CAS_LATENCY_2;
	sdramHandle.Init.WriteProtection    = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
	sdramHandle.Init.SDClockPeriod      = SDCLOCK_PERIOD;
	sdramHandle.Init.ReadBurst          = FMC_SDRAM_RBURST_ENABLE;
	sdramHandle.Init.ReadPipeDelay      = FMC_SDRAM_RPIPE_DELAY_0;

	/* SDRAM controller initialization */

	SDRAM_MspInit(&sdramHandle, NULL); /* __weak function can be rewritten by the application */

	if(HAL_SDRAM_Init(&sdramHandle, &Timing) != HAL_OK)
	{
		sdramstatus = SDRAM_ERROR;
	}
	else
	{
		sdramstatus = SDRAM_OK;
	}

	/* SDRAM initialization sequence */
	SDRAM_Initialization_sequence(REFRESH_COUNT);

	return sdramstatus;
}

/*******************************************************************************
* Function Name  : SDRAM_ReadData_WORD
* Description    : 读SDRAM数据32位方式
* Input          : uwStartAddress  读取起始地址
                   uwDataSize 读取大小
* Output         : pData 读取数据的存储指针
* Return         : None
* Note			 : None
*******************************************************************************/
uint8_t SDRAM_ReadData_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize)
{
	if(HAL_SDRAM_Read_32b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
	{
		return SDRAM_ERROR;
	}
	else
	{
		return SDRAM_OK;
	} 
}

/*******************************************************************************
* Function Name  : SDRAM_ReadData_DMA_WORD
* Description    : DMA方式读SDRAM数据32位方式
* Input          : uwStartAddress  读取起始地址
                   uwDataSize 读取大小
* Output         : pData 读取数据的存储指针
* Return         : None
* Note			 : None
*******************************************************************************/
uint8_t SDRAM_ReadData_DMA_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize)
{
	if(HAL_SDRAM_Read_DMA(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
	{
		return SDRAM_ERROR;
	}
	else
	{
		return SDRAM_OK;
	}     
}

/*******************************************************************************
* Function Name  : SDRAM_WriteData_WORD
* Description    : 向SDRAM写数据32位方式
* Input          : uwStartAddress  写入起始地址
                   uwDataSize 写入大小
				   pData 待写入的数据
* Output         : None
* Return         : None
* Note			 : None
*******************************************************************************/
uint8_t SDRAM_WriteData_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize) 
{
	if(HAL_SDRAM_Write_32b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
	{
		return SDRAM_ERROR;
	}
	else
	{
		return SDRAM_OK;
	}
}

/*******************************************************************************
* Function Name  : SDRAM_WriteData_DMA_WORD
* Description    : DMA方式向SDRAM写数据32位方式
* Input          : uwStartAddress  写入起始地址
                   uwDataSize 写入大小
				   pData 待写入的数据
* Output         : None
* Return         : None
* Note			 : None
*******************************************************************************/
uint8_t SDRAM_WriteData_DMA_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize) 
{
	if(HAL_SDRAM_Write_DMA(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
	{
		return SDRAM_ERROR;
	}
	else
	{
		return SDRAM_OK;
	} 
}

/*******************************************************************************
* Function Name  : SDRAM_ReadData_BYTE
* Description    : 读SDRAM数据8位方式
* Input          : uwStartAddress  读取起始地址
                   uwDataSize 读取大小
* Output         : pData 读取数据的存储指针
* Return         : None
* Note			 : None
*******************************************************************************/
uint8_t SDRAM_ReadData_BYTE(uint32_t uwStartAddress, uint8_t *pData, uint32_t uwDataSize)
{
	if(HAL_SDRAM_Read_8b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
	{
		return SDRAM_ERROR;
	}
	else
	{
		return SDRAM_OK;
	} 
}

/*******************************************************************************
* Function Name  : SDRAM_WriteData_BYTE
* Description    : 向SDRAM写数据8位方式
* Input          : uwStartAddress  写入起始地址
                   uwDataSize 写入大小
				   pData 待写入的数据
* Output         : None
* Return         : None
* Note			 : None
*******************************************************************************/
uint8_t SDRAM_WriteData_BYTE(uint32_t uwStartAddress, uint8_t *pData, uint32_t uwDataSize) 
{
	if(HAL_SDRAM_Write_8b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
	{
		return SDRAM_ERROR;
	}
	else
	{
		return SDRAM_OK;
	}
}

//发送命令给SDRAM BANK
uint8_t BSP_SDRAM_Sendcmd(FMC_SDRAM_CommandTypeDef *SdramCmd)
{
	if(HAL_SDRAM_SendCommand(&sdramHandle, SdramCmd, SDRAM_TIMEOUT) != HAL_OK)
	{
		return SDRAM_ERROR;
	}
	else
	{
		return SDRAM_OK;
	}
}

//SDRAM DMA传输中断
void BSP_SDRAM_DMA_IRQHandler(void)
{
	HAL_DMA_IRQHandler(sdramHandle.hdma); 
}










 

附件为移植好的

STemWin移植_无操作系统.rar (50.55 MB, 下载次数: 42)

最新回复

GUI 库很多,emWin在STM32,NXP上大显身手。emWin的前身UCGUI,而UCGUI 的高级版本就是 emWin, 而 STemWin 是SEGGER 授权给 ST 的 emWin 版本,ST的芯片可以免费使用 STemWin,而且 STemWin 针对 ST 的芯片做了优化。 非常感谢给出例程。   详情 回复 发表于 2022-11-7 06:24
点赞 关注
 
 

回复
举报

6960

帖子

11

TA的资源

版主

沙发
 

GUI 库很多,emWin在STM32,NXP上大显身手。emWin的前身UCGUI,而UCGUI 的高级版本就是 emWin, 而 STemWin 是SEGGER 授权给 ST 的 emWin 版本,ST的芯片可以免费使用 STemWin,而且 STemWin 针对 ST 的芯片做了优化。

非常感谢给出例程。

 
 
 

回复
您需要登录后才可以回帖 登录 | 注册

随便看看
查找数据手册?

EEWorld Datasheet 技术支持

相关文章 更多>>
关闭
站长推荐上一条 1/9 下一条

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 国产芯 安防电子 汽车电子 手机便携 工业控制 家用电子 医疗电子 测试测量 网络通信 物联网

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
快速回复 返回顶部 返回列表