本帖最后由 xiguabuda 于 2022-3-16 05:38 编辑
开发板:NodeMcu Esp8266
使用语言 :Micro Pyhton
使用硬件:HC-SR04超声波探测器,蜂鸣器,OLED屏幕
接线图:如下
Micro Pyhton代码:
请修改代码中的你的WiFi名称和WiFi密码,为你自己的路由设定的;
import network
import utime
def WIFI():
# 连接WiFi
wlan = network.WLAN(network.STA_IF)
# 打开WiFi对象
wlan.active(True)
# 设置WiFi链接信息
wlan.connect('huawei-FTO', 'yigeling')
# 连接无线网络:
WIFI()
#
# main.py -- put your code here!
"""
原理:
(1)用IO口给TRIG触发测距,给最少10us的高电平信呈。
(2)模块自动发送 8 个 40khz 的方波,自动检测Echo是否有信号返回。
(3)Echo有信号返回,通过io输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。
"""
#
import machine
from machine import Pin
import time
#超声波检测器vcc引脚,接开发板上的VIN(不然供电不稳,会导致各种鸟问题)
Trig = Pin(12, Pin.OUT) #触发超声波模块 发射超声波Trig线接 Node Mcu D6引脚
Echo = Pin(13, Pin.IN) #接收超声波信号 Echo线接 Node Mcu D7 引脚
#蜂鸣器设定-通电后,鸣响100毫秒
beeper = Pin(14,Pin.OUT) #蜂鸣器引脚(I/0)口线接 Node Mcu D5引脚
utime.sleep_ms(100)
beeper.on()
#
from machine import Pin, I2C
i2c = I2C(scl=Pin(5), sda=Pin(4)) #SCL接开发板 D1引脚,SDA接开发板D2引脚 GUN和vcc 接开发板 GUN,和3v3引脚
from ssd1306 import SSD1306_I2C
oled = SSD1306_I2C(128, 64, i2c)
oled.text('China - BeiJing', 0, 30)
oled.show()
while True:
# 给一个高电平触发信号维持20微秒,然后变成低电平
Trig.value(1)
time.sleep_us(20)
Trig.value(0)
while (Echo.value() == 0): #如果没有收到信号,再触发一次,发射超声波
Trig.value(1)
time.sleep_us(20)
Trig.value(0)
if (Echo.value() == 1): #如果接收到了信号
ts = time.ticks_us() #此时定下高电平的开始时刻
while (Echo.value() == 1): #如果还是高电平就不断地运行这段代码,直到高电平结束后跳出循环
pass
te = time.ticks_us() #定下高电平结束时刻
tc = te - ts #算出高电平维持时间
distance = str(int((tc * 0.034) / 2)) #取整型后,得到的数值最多为四位数
num = int(distance)
if num < 50:
#如果超声波测量距离小于50厘米,则进行蜂鸣器报警,时长50毫秒
print('[警告]Distance:', distance, 'cm 距离过近!')
oled.fill(0)#清屏,上次的内容
oled.text(' ON:'+distance+'CM', 30, 30)
oled.show()
beeper.off()
utime.sleep_ms(50)
beeper.on()
else:
print('[安全]Distance:', distance, 'cm')
oled.fill(0)#清屏,上次的内容
oled.text('YES:'+distance+'CM', 30, 30)
oled.show()
oled.invert(True)
oled.invert(False)
文字模块代码:
ssd1306.py
必须使用ssd1306.py 这个文件,作为模块导入到main.py里面
使用使用的时候,需要将ssd1306和main.py这两个文件同时上传开发板里面去:
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces
import time
import framebuf
# register definitions
from micropython import const
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xa4)
SET_NORM_INV = const(0xa6)
SET_DISP = const(0xae)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xa0)
SET_MUX_RATIO = const(0xa8)
SET_COM_OUT_DIR = const(0xc0)
SET_DISP_OFFSET = const(0xd3)
SET_COM_PIN_CFG = const(0xda)
SET_DISP_CLK_DIV = const(0xd5)
SET_PRECHARGE = const(0xd9)
SET_VCOM_DESEL = const(0xdb)
SET_CHARGE_PUMP = const(0x8d)
class SSD1306:
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
# Note the subclass must initialize self.framebuf to a framebuffer.
# This is necessary because the underlying data buffer is different
# between I2C and SPI implementations (I2C needs an extra byte).
self.poweron()
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR, 0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO, self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET, 0x00,
SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV, 0x80,
SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
SET_VCOM_DESEL, 0x30, # 0.83*Vcc
# display
SET_CONTRAST, 0xff, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_framebuf()
def fill(self, col):
self.framebuf.fill(col)
def pixel(self, x, y, col):
self.framebuf.pixel(x, y, col)
def scroll(self, dx, dy):
self.framebuf.scroll(dx, dy)
def text(self, string, x, y, col=1):
self.framebuf.text(string, x, y, col)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
# Add an extra byte to the data buffer to hold an I2C data/command byte
# to use hardware-compatible I2C transactions. A memoryview of the
# buffer is used to mask this byte from the framebuffer operations
# (without a major memory hit as memoryview doesn't copy to a separate
# buffer).
self.buffer = bytearray(((height // 8) * width) + 1)
self.buffer[0] = 0x40 # Set first byte of data buffer to Co=0, D/C=1
self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_framebuf(self):
# Blast out the frame buffer using a single I2C transaction to support
# hardware I2C interfaces.
self.i2c.writeto(self.addr, self.buffer)
def poweron(self):
pass
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
self.buffer = bytearray((height // 8) * width)
self.framebuf = framebuf.FrameBuffer1(self.buffer, width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.low()
self.cs.low()
self.spi.write(bytearray([cmd]))
self.cs.high()
def write_framebuf(self):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.high()
self.cs.low()
self.spi.write(self.buffer)
self.cs.high()
def poweron(self):
self.res.high()
time.sleep_ms(1)
self.res.low()
time.sleep_ms(10)
self.res.high()