|
4. FFT的C实现方法
//**********************************************************
// 函数名: 快速傅立叶变换(来源《C常用算法集》)
// 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。
// 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。
//
// 入口参数:
// l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换
// il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角
// n: 输入的点数,为偶数,一般为32,64,128,...,1024等
// k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数
// pr[]: l=0时,存放N点采样数据的实部
// l=1时, 存放傅立叶变换的N个实部
// pi[]: l=0时,存放N点采样数据的虚部
// l=1时, 存放傅立叶变换的N个虚部
//
// 出口参数:
// fr[]: l=0, 返回傅立叶变换的实部
// l=1, 返回逆傅立叶变换的实部
// fi[]: l=0, 返回傅立叶变换的虚部
// l=1, 返回逆傅立叶变换的虚部
// pr[]: il = 1,i = 0 时,返回傅立叶变换的模
// il = 1,i = 1 时,返回逆傅立叶变换的模
// pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角
// il = 1,i = 1 时,返回逆傅立叶变换的辐角
// data: 2005.8.15,Mend Xin Dong
void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il)
{
int it,m,is,i,j,nv,l0;
double p,q,s,vr,vi,poddr,poddi;
for (it=0; it<=n-1; it++)
{
m = it;
is = 0;
for(i=0; i<=k-1; i++)
{
j = m/2;
is = 2*is+(m-2*j);
m = j;
}
fr[it] = pr[is];
fi[it] = pi[is];
}
//----------------------------
pr[0] = 1.0;
pi[0] = 0.0;
p = 6.283185306/(1.0*n);
pr[1] = cos(p);
pi[1] = -sin(p);
if (l!=0)
pi[1]=-pi[1];
for (i=2; i<=n-1; i++)
{
p = pr[i-1]*pr[1];
q = pi[i-1]*pi[1];
s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]);
pr = p-q;
pi = s-p-q;
}
for (it=0; it<=n-2; it=it+2)
{
vr = fr[it];
vi = fi[it];
fr[it] = vr+fr[it+1];
fi[it] = vi+fi[it+1];
fr[it+1] = vr-fr[it+1];
fi[it+1] = vi-fi[it+1];
}
m = n/2;
nv = 2;
for (l0=k-2; l0>=0; l0--)
{
m = m/2;
nv = 2*nv;
for(it=0; it<=(m-1)*nv; it=it+nv)
for (j=0; j<=(nv/2)-1; j++)
{
p = pr[m*j]*fr[it+j+nv/2];
q = pi[m*j]*fi[it+j+nv/2];
s = pr[m*j]+pi[m*j];
s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]);
poddr = p-q;
poddi = s-p-q;
fr[it+j+nv/2] = fr[it+j]-poddr;
fi[it+j+nv/2] = fi[it+j]-poddi;
fr[it+j] = fr[it+j]+poddr;
fi[it+j] = fi[it+j]+poddi;
}
}
if(l!=0)
for(i=0; i<=n-1; i++)
{
fr = fr/(1.0*n);
fi = fi/(1.0*n);
}
if(il!=0)
for(i=0; i<=n-1; i++)
{
pr = sqrt(fr*fr+fi*fi);
if(fabs(fr)<0.000001*fabs(fi))
{
if ((fi*fr)>0)
pi = 90.0;
else
pi = -90.0;
}
else
pi = atan(fi/fr)*360.0/6.283185306;
}
return;
}
5. 傅立叶变换的几个重要应用
l 卷积
卷积是滤波网络对信号响应的术语,即用卷积积分来描述滤波网络对冲击函数信号的反应。若x(t)为信号,h(t)为响应,则卷积积分表示如下:
h(t)·x(t) = ∫x(τ)h(t-τ)dτ, 区间:-∽~+∽
每一个卷积点是信号函数与反转和平移后的网络函数的乘积中的区域。
l 相关
相关是用于小信号噪声检测的一种方法。如果有已知信号与一个噪声波形相关,用这个方法可以检测出来,有非零的结果表示发现了相关性,结果越明显,相关性越大。
其在形式上与卷积积分相似,如下:
z(t) = ∫x(τ)h(t+τ)dt, 区间:-∽~+∽
自相关是用来描述一个信号与它自己的相关程度,其值为信号的PSD,即功率谱密度。
l 滤波
这可能是FFT最广泛的应用了,它使对波形的频率分量滤波变得十分简单。比如对采样信号进行FFT后,干掉不需要的频率分量,再进行FFT反变换,就得到滤波后的期望信号。
l 信号分析
比如电力监控系统的谐波分析,就需要对采样数据进行FFT运算,然后通过液晶屏或其它人机界面重新绘画出来,以方便技术人员掌握电力的质量。
小结:
傅立叶变换在目前的相关电子产品中用得非常广泛,可以说,它是描述函数的另一种语言。掌握傅立叶变换,学会在空域和频域中同时思考问题,很多时候可以让我们使用简单的方法来解决复杂的问题 |
|