我们时时刻刻都在使用电子通讯设备,对此我们习以为常。我们用汽车收音机收听新闻,用手机交谈。我们使用电脑在网络上搜索我们想找的东西、收发电子邮件。当我们回家后,我们用MP3播放器听音乐、收看高清电视或在我们的电子阅读器上看最新畅销书。而这仅仅是个开始。 通信技术在不断进步,每年都会推出新产品。虽然无线业务特别火爆,有线领域仍然健康且不断增长。对有线/无线两种技术,我们都要求它们能提供更快的数据传输速度、低功耗且具有移动功能。幸运的是,该产业有能力满足这些要求。
因为无线是时下的王者,所以它激发我们思考永远不会消失的有线通信的命运。在19世纪,通信就是以有线电报和电话为肇始的,自此以后,有线通信通过采用更快的短程铜缆以至更快的光缆得以进一步发展。虽然有线通信是成熟的,但它仍在不断进步完善。两种有线技术脱颖而出:以太网和光传送网(OTN)。
以太网蓬勃发展
以太网,这种无处不在的局域网(LAN)技术,已与我们相伴37年了。它与半导体和计算机技术同步发展,从基于同轴电缆的局域网逐步过渡到运营商级的光网络,其间历经多种变化和沿革。IEEE的802.3以太网标准组织一直在推出新变化、做出新改进。
以太网的核心仍然是10/100/1000Mbps CAT5e双绞线局域网,90%以上的所有个人电脑和其它类计算机的联网使用的都是该技术。我们现在有10Gbps以太网,它不仅有各种不同的光实现方法,还有基于铜介质的10Gbps以太网版本,在用于服务器和网络互联的数据中心中,正越来越多地使用10Gbps以太网。
其次是新兴的运营商级以太网的努力,它是通过提供服务质量(QoS)和管理元素将以太网转变成一个覆盖范围更宽广的城域网(MAN)和广域网(WAN)的技术实现的,服务质量和管理元素使以太网能以较低成本与传统的SONET/SDH网络竞争。另外,它还为我们展现出更多前景。
以太网联盟总裁Brad Booth介绍,下一个热点以太网演进涉及iWARP技术。iWARP指的是——互联网广域RDMA协议(Internet Wide Area RDMA Protocol),而RDMA代表的又是——远程直接内存访问(Remote Direct Memory Access)。iWARP技术已出现几年了,但没太大进展。但现在iWARP是以太网工程工作组(IETF)拥有的一个标准,并得到了以太网联盟的推动。
iWARP是借助传输控制协议(TCP)或流量控制传输协议(SCTP)以减小使用互联网协议(IP)传输延迟的一种方法。 SCTP协议是一个传输层协议,根据应用场合,它可取代TCP或用户数据报协议(UDP)。延迟是标准以太网的一个问题,对采用10Gbps以太网的系统来说,尤其严重。
iWARP技术能在几乎无需操作系统的介入下,直接从一台电脑内存中读出数据并写入另一台电脑的内存,从而把数据传输延迟降到极低水平。它可以实现零拷贝(zero-copy)数据传输。零拷贝传输是使用直接内存访问(DMA)传送数据的一种方法,它把数据从电脑或发送端网络节点的内存中直接发送到接收端节点的内存,而无需收/发两端CPU的干预。
iWARP技术的实现需整合硬件和软件资源。它通常以TCP减负引擎(TOE)的方式驻留在网络接口卡(NIC)内,TOE把CPU从网络上这种事务性工作中解脱开来。该软件是一种开放源码软件栈,是由开放架构联盟开发并维护的。iWARP栈技术目前部署在Linux内,Windows Server 2008上也有。
数据中心已在使用10Gbps以太网,如果延迟问题得到解决,其应用将显著得到普及。借助iWARP技术,10Gbps以太网可以进一步扩展其在数据中心内的使用规模和范围,并将在建造服务器集群、高性能计算机(HPC)系统和超级计算机等应用中派上更大用场。它还可以更有力地与InfiniBand连接竞争,到目前为止,InfiniBand一直在数据中心和高性能计算机集群近距离连接中占主导地位。
此外,以太网联盟在力推融合以太网(Converged Ethernet)。这一努力演示了10Gbps以太网是如何能够提供可在一个融合网络内实现传输客户端资讯、存储和服务器应用通信等功能的高性能企业级数据中心基础设施的。
融合以太网使用iWARP技术进行处理器间的通信。此外,它支持光纤信道以太网(FCoE)和用于存储的因特网小型计算机系统接口(iSCSI)。它使用数据中心桥接协议或基于优先级的流量控制和改进的传送选项。另外,它使用SFP+直连电缆和光纤收发器以及10GbaseT以太网铜线。
此外,IEEE的以太网工作组已接近完成802.3ba标准,新标准是为我们建构40Gbps和100Gbps光纤数据传输系统制定的。其目标是创建一个支持传统以太网帧格式的网络以及研制可支持40和100Gbps的新媒体接入控制器(MAC)层和物理层(PHY)。
我们可能会看到,以40Gbps的速率可分别在以下介质上传送如下远的距离。单模光纤(SMF)是10千米;光模3(OM3)多模光纤(MMF)是100米;铜电缆是7米;而底板上是1米多。 对100Gbps来说,可传送的距离分别是:单模光纤(SMF)40千米和10千米;光模3(OM3)多模光纤(MMF)是100米;铜电缆是7米。
借助当今不断进步和负担得起的10Gbyte/s技术,采用4条10Gbps光纤或4条不同波长的10Gbps单模光纤数据流可相对容易地实现40Gbps速率。但100 Gbps水平要难得多。采用4个25Gbps流或10个10Gbps光纤流是考虑中的一些方法。我们拭目以待哪种技术会脱颖而出。IEEE计划在2010年6月完成对802.3ba的最终批准审核。
若你奇怪谁需要这样的速度,再想一想。由于我们所使用网络的数据容量以几何级数增长,所以几乎所有的网络都渐渐工作在过载条件下。源于视频内容的无休止暴涨,互联网骨干网和互联网服务供应商要提供足够容量以满足要求就变得益发艰巨。无线系统面临的局面更棘手。
只要出台标准,40Gbps和100Gbps系统就将得到追捧。而眼下40Gbps的SONET/ SDH系统已可用,这些老系统缺乏进一步提升速率的途径。借助更快的光纤,是该为光纤系统制定一个新的、更多地面向数据的协议的时候了。而这样一种协议——OTN业已就位。
OTN(光传送网)为我们带来了用于高速数据传输、正在逐步取代SONET/SDH和其它光学系统的新一代光纤网络。随着互联网和无线网络业务量的持续上升,需要具有更高速率、有能力适应多种不同协议和格式的新的传输系统。IP /以太网服务正逐步取代传统的基于SONET/SDH和PDH(准同步数字层级)的时域多路复用(TDM)服务,从而需要一个改善的传输系统。 OTN正是这样一个系统。
OTN并不新。国际电联(ITU)在2001年就批准了该标准。但因当时的那次经济不景气,光学设备和服务受到影响,OTN的部署也被缓阻。自那以后,数据量增加了一个数量级,从而迫切需要一个新系统。ITU OTN(国际电联光传送网)就是为这一目的设计的。相关的国际电联标准是——G.709和G.872。
OTN的目标是帮助把多种服务汇集成一个公共的传输服务以降低运营成本和所需的新资本支出。它提供了一个可实现100Gbps高速光通信服务且具有网络管理、性能监控、切换以及诸如Sonet/SDH那样的故障隔离的这样一种通用解决方案。
网络运营商希望一种能兼容密集波分复用(DWDM)、并像Sonet/SDH那样能支持运营、管理、维护和供应(OAM&P)的这样一个系统。同时,运营商希望能通过以太网、光纤通道、企业级系统连接(ESCON)、Sonet/SDH和传统的异步传输模式(ATM)以及帧中继等技术传输数据。
OTN可从IP/以太网交换机和路由器那里携带完整的10Gbps以太网LAN PHY。基于该原因,OTN有时被称为数字包封技术。它可在一个包封内整合进不同协议的多个信号,可用一个波长传送该包封从而实现最高效能和最大成本效益。
OTN可以三个基本数据速率输送数据。OTU1具有2.7Gbps线速率、可传送OC-48/ST-16同步Sonet/SDH信号。OTU2的线速率是10.7Gbps、所以可处理OC-192/STM-64或10Gbps以太网操作。OTU3的线速率是43Gbps,因此将支持OC-768/STM-256或其它40bps协议。OTU4将涵盖未来的100Gbps以太网。
前向纠错(FEC)能力是增加的一个重要特性。OTN采用的是Reed-Solomon RS算法。它增加了约5dB的编码增益,显著改善了误码率(BER)。其结果是提升了链路预算并降低了链路噪声,从而使每个链路节点的间隔达20千米。
OTN是未来的光骨干网。采用该技术的条件业已具备,随着互联网和无线通信业务量的不断扩大,预计这一进程将加速。运营商等不起未来的100Gbps标准,它们在迅速转向40Gbps版本。因此,随着OTN和40Gbps系统的兴起,将会对DWDM光网络进行新投入。
Applied Micro(前AMCC公司)和PMC-Sierra已经在研制OTN芯片。Applied Micro的Yahara成帧器/映射器/PHY芯片包括前向纠错电路。为长途和城域光网络设计的OTN芯片与该公司的Rubicon和Pemaquid芯片一道工作,这两款芯片也用于实现OTN设备。
PMC-Sierra的META 20G器件可以在运营商以太网交换机和路由器设备内支持OTN。在一款芯片上,它支持运营商级以太网IP、光传送网和SONET/SDH。该公司的HyPHY 20G器件支持基于光传送网城域基础设施的高带宽数据、视频和语音服务的融合(图1)。
WiMAX拔得4G技术头筹
尽管还不景气,但在2009年,无线技术还是在许多方面取得了长足进展且前景光明。其它领域的发展,特别是下一代技术的进步已消弭了蜂窝领域缓慢增长的不利。
第四代(4G)无线一般认为包括用于宽带的WiMAX和用于蜂窝的长期演进(LTE)技术。 WiMAX技术业已存在一段时间且一直在发展,而LTE仍羽翼未丰、蓄势待发。2010年底,将会完成LTE的首个部署,但要到2011年以后才可能看到LTE的批量部署和使用。
同时,作为宽带无线接入技术,WiMAX在持续取得进步。 WiMAX是一种为无线城域网设计的无线数据通信系统。它可分别为定点站和移动站提供远达30英里(50公里)和3至10英里(5至15公里)的宽带无线接入(BWA)服务。根据服务供应商和距离的不同,数据传输率可在低端的约1Mbps到高端的20Mbps间变化。
虽然Wi-Fi/802.11无线局域网(WLAN)可能更快,但在大多数情况下,其传输距离只有100到300英尺(30至100米)。 WiMAX可在农村地区提供DSL那样的服务。它也广泛用于Wi-Fi热点回程链路、流量监控以及视频监控系统。另外,它还是美国政府正计划着的、将在即将实行的乡村宽带刺激计划中得以广泛使用的一种候选技术。
IEEE 802.16标准定义了WiMax。WiMAX论坛提供了测试制造商所生产设备的兼容性所需的方法。该行业组织还促进了该技术的发展和商业化。Clearwire公司的无线高速互联网服务是WiMAX定点宽带应用的一个很好例子。
Yankee Group称,尽管受经济下滑和资金延期到位的影响,Clearwire公司在2009年还是拥有了约390万用户。研究人员还预计,到2015年,将达9230万用户。ABI Research估计,到2009年底,约有200万WiMAX移动用户。
WiMAX显示出它是一种类似Wi-Fi那样的嵌入式无线技术。现在,在40多款笔记本电脑和上网本中采用了该技术。英特尔即将推出的用于笔记本电脑的WiMAX芯片组预计将得到广泛应用以提供WiMAX网络的全球漫游。借助嵌入式WiMAX技术,可以接入几英里以外的基站,而不再是只能位于几百英尺内的Wi-Fi接入点。最早在今年晚些时候,也许就能用到WiMAX手机。
总体而言,WiMAX前景非常光明。WiMAX论坛介绍,在全球145个国家,有超过500个WiMAX部署。WiMAX应用还将继续增长。据预计,WiMax将是美国政府宽带刺激计划的主要参与者。据估计,超过1000万的美国农民没有高速互联网连接,“高速”指的是数据速率超过768kbps。预计WiMAX起码会满足部分需求。 www.wimax.com 是了解WiMax信息的好去处。