LitchiCheng 发表于 2024-10-26 10:13

一起读《动手学深度学习(PyTorch版)》- 多层感知机 - Tanh、RELU训练对比

<div class='showpostmsg'><article data-content="[{&quot;type&quot;:&quot;block&quot;,&quot;id&quot;:&quot;2vrE-1729868216059&quot;,&quot;name&quot;:&quot;paragraph&quot;,&quot;data&quot;:{},&quot;nodes&quot;:[{&quot;type&quot;:&quot;text&quot;,&quot;id&quot;:&quot;Y6MA-1729868216060&quot;,&quot;leaves&quot;:[{&quot;text&quot;:&quot;使用RELU激活函数&quot;,&quot;marks&quot;:[]}]}],&quot;state&quot;:{}}]">
<p>使用RELU激活函数</p>

<pre>
<code>import torch
import torchvision
from torch.utils import data
from torchvision import transforms
import matplotlib.pyplot as plt
from torch import nn

def get_dataloader_workers():
    return 6

def load_data_fashion_mnist(batch_size, resize=None):
    trans =
    if resize:
      trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root="./data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="./data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))

def accurancy(y_hat, y):
    if len(y_hat.shape) &gt; 1 and y_hat.shape &gt; 1:
      y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

class Accumulator:
    def __init__(self, n) -&gt; None:
      self.data = *n
   
    def add(self, *args):
      self.data =

    def reset(self):
      self.data = * len(self.data)

    def __getitem__(self, idx):
      return self.data

def evaluate_accurancy(net, data_iter):
    if isinstance(net, torch.nn.Module):
      net.eval()
    metric = Accumulator(2)
    with torch.no_grad():
      for X, y in data_iter:
            metric.add(accurancy(net(X), y), y.numel())
    return metric / metric

def train_epoch_ch3(net, train_iter, loss, updater):
    if isinstance(net, torch.nn.Module):
      net.train()
    metric = Accumulator(3)
    for X, y in train_iter:
      y_hat = net(X)
      l = loss(y_hat, y)
      if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.mean().backward()
            updater.step()
      else:
            l.sum().backward()
            updater(X.shape)
      metric.add(float(l.sum()), accurancy(y_hat, y), y.numel())
    return metric / metric, metric / metric

def set_axes(axes, xlable, ylable, xlim, ylim, xscale, yscale, legend):
    axes.set_xlabel(xlable)
    axes.set_ylabel(ylable)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
      axes.legend(legend)
      axes.grid()

class Animator:
    def __init__(self, xlable=None, ylable=None, legend=None, xlim=None, ylim=None,
    xscale='linear', yscale='linear',fmts=('-','m--','g-.','r:'), nrows=1, ncols=1, figsize=(3.5, 2.5)):
      if legend is None:
            legend = []
      self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
      if nrows * ncols == 1:
            self.axes =
      self.config_axes = lambda: set_axes(self.axes, xlable, ylable, xlim, ylim, xscale, yscale, legend)
      self.X, self.Y, self.fmts = None, None, fmts
   
    def add(self, x, y):
      if not hasattr(y, "__len__"):
            y=
      n = len(y)
      if not hasattr(x, "__len__"):
            x = * n
      if not self.X:
            self.X = [[] for _ in range(n)]
      if not self.Y:
            self.Y = [[] for _ in range(n)]
      for i, (a,b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X.append(a)
                self.Y.append(b)
      self.axes.cla()
      for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes.plot(x, y, fmt)
      self.config_axes()
      

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    animator = Animator(xlable='epoch', xlim=, ylim=, legend=['train loss', "train acc", "test acc"])
    for epoch in range(num_epochs):
      train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
      test_acc = evaluate_accurancy(net, test_iter)
      animator.add(epoch+1, train_metrics+(test_acc, ))
    train_loss, train_acc = train_metrics
    assert train_loss &lt; 0.5, train_loss
    assert train_acc &lt; 1 and train_acc &gt; 0.7, train_acc
    assert test_acc &lt; 1 and test_acc &gt; 0.7, test_acc

net = nn.Sequential(nn.Flatten(),
                  nn.Linear(784, 256),
                  nn.ReLU(),
                  nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
      nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights)

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = load_data_fashion_mnist(batch_size)
train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

plt.show()</code></pre>

<article data-content="[{&quot;type&quot;:&quot;block&quot;,&quot;id&quot;:&quot;0pVh-1729868216061&quot;,&quot;name&quot;:&quot;paragraph&quot;,&quot;data&quot;:{},&quot;nodes&quot;:[{&quot;type&quot;:&quot;text&quot;,&quot;id&quot;:&quot;ogdd-1729868216062&quot;,&quot;leaves&quot;:[{&quot;text&quot;:&quot;训练结果&quot;,&quot;marks&quot;:[]}]}],&quot;state&quot;:{}}]">
<p>训练结果</p>

<p> &nbsp;</p>

<article data-content="[{&quot;type&quot;:&quot;block&quot;,&quot;id&quot;:&quot;D8gb-1729868241686&quot;,&quot;name&quot;:&quot;paragraph&quot;,&quot;data&quot;:{},&quot;nodes&quot;:[{&quot;type&quot;:&quot;text&quot;,&quot;id&quot;:&quot;wN1A-1729868241685&quot;,&quot;leaves&quot;:[{&quot;text&quot;:&quot;更换激活函数为Tanh&quot;,&quot;marks&quot;:[]}]}],&quot;state&quot;:{}}]">
<p>更换激活函数为Tanh</p>

<pre>
<code>net = nn.Sequential(nn.Flatten(),
                  nn.Linear(784, 256),
                  nn.Tanh(),
                  nn.Linear(256, 10))</code></pre>

<p> &nbsp;</p>

<p>&nbsp;</p>
</article>
</article>
</article>
</div><script>                                        var loginstr = '<div class="locked">查看本帖全部内容,请<a href="javascript:;"   style="color:#e60000" class="loginf">登录</a>或者<a href="https://bbs.eeworld.com.cn/member.php?mod=register_eeworld.php&action=wechat" style="color:#e60000" target="_blank">注册</a></div>';
                                       
                                        if(parseInt(discuz_uid)==0){
                                                                                                (function($){
                                                        var postHeight = getTextHeight(400);
                                                        $(".showpostmsg").html($(".showpostmsg").html());
                                                        $(".showpostmsg").after(loginstr);
                                                        $(".showpostmsg").css({height:postHeight,overflow:"hidden"});
                                                })(jQuery);
                                        }                </script><script type="text/javascript">(function(d,c){var a=d.createElement("script"),m=d.getElementsByTagName("script"),eewurl="//counter.eeworld.com.cn/pv/count/";a.src=eewurl+c;m.parentNode.insertBefore(a,m)})(document,523)</script>

Jacktang 发表于 2024-10-26 14:22

<p>&nbsp;多层感知机 - Tanh、RELU训练对比核心也是算法</p>

zgnasd1950 发表于 2024-10-26 22:30

LitchiCheng 发表于 2024-10-27 13:15

Jacktang 发表于 2024-10-26 14:22
&nbsp;多层感知机 - Tanh、RELU训练对比核心也是算法

<p>是的啊</p>

LitchiCheng 发表于 2024-10-27 13:15

zgnasd1950 发表于 2024-10-26 22:30
学习了,内容非常清晰,非常感谢楼主的分享。好文,有需要的可以看看。

<p>感谢</p>
页: [1]
查看完整版本: 一起读《动手学深度学习(PyTorch版)》- 多层感知机 - Tanh、RELU训练对比