【Sipeed MAix BiT AIoT 开发套件】 1、开发环境搭建
<div> </div><div><strong>1、开发板简介</strong></div>
<div>MAIX Bit开发板是SiPEED公司MAIX产品线的一员,基于边缘智能计算芯片K210(RISC-V架构 64位双核)设计的一款AIOT开发板。经典两侧排针设计,可以直接配合面包板使用,板载Type-C接口和USB-UART电路,用户可以直接通过USB Type-C线连接电脑进行开发,配置128Mbit Flash、LCD、DVP、Micro SD卡等接口并把所有IO引出,方便用户扩展。</div>
<table border="1">
<tbody>
<tr>
<td colspan="2"><strong>K210 芯片基本参数</strong></td>
</tr>
<tr>
<td>内核</td>
<td>RISC-V Dual Core 64bit, with FPU</td>
</tr>
<tr>
<td>主频</td>
<td>400MHz (可超频至600MHz)</td>
</tr>
<tr>
<td>SRAM</td>
<td>内置8M Byte</td>
</tr>
<tr>
<td>图像识别</td>
<td>QVGA@60fps/VGA@30fps</td>
</tr>
<tr>
<td>语音识别</td>
<td>麦克风阵列(8mics)</td>
</tr>
<tr>
<td>网络模型</td>
<td> 支持YOLOv3<br />
Mobilenetv2<br />
TinyYOLOv2<br />
人脸识别等</td>
</tr>
<tr>
<td>深度学习框架</td>
<td>支持TensorFlow \ Keras \ Darknet \ Caffe 等主流框架</td>
</tr>
<tr>
<td>外设</td>
<td>FPIOA、 UART、 GPIO、 SPI、 I2C、I2S、 TIMER</td>
</tr>
<tr>
<td>视频处理</td>
<td> 神经网络处理器(KPU)<br />
FPU满足IEEE754-2008标准<br />
音频处理器(APU)<br />
快速傅里叶变换加速器(FFT)</td>
</tr>
</tbody>
</table>
<div></div>
<table border="1">
<tbody>
<tr>
<td colspan="2"><strong>软件开发</strong></td>
</tr>
<tr>
<td>芯片操作系统</td>
<td>FreeRTOS、RT-Thread等</td>
</tr>
<tr>
<td>开发环境</td>
<td>MaixPy IDE、PlatformlO IDE、Arduino IDE等</td>
</tr>
<tr>
<td>编程语言</td>
<td>C,C++,MicroPython</td>
</tr>
</tbody>
</table>
<div><strong>2、开发环境搭建——MaixPy IDE</strong></div>
<div>基于MaixPy IDE进开发,其安装流程参考:</div>
<div><a href="https://wiki.sipeed.com/soft/maixpy/zh/get_started/env_maixpyide.html" target="_blank">https://wiki.sipeed.com/soft/maixpy/zh/get_started/env_maixpyide.html</a></div>
<div>安装包位于:</div>
<div><a href="https://dl.sipeed.com/MAIX/MaixPy/ide/">https://dl.sipeed.com/MAIX/MaixPy/ide/</a></div>
<div></div>
<div>根据系统选择自己想要的版本,我选择的使用Win平台的</div>
<div></div>
<div><strong>3、Hello World程序试运行</strong></div>
<div>选择示例</div>
<div></div>
<div>
<pre>
<code class="language-python">
# Hello World Example
#
# Welcome to the MaixPy IDE!
# 1. Conenct board to computer
# 2. Select board at the top of MaixPy IDE: `tools->Select Board`
# 3. Click the connect buttion below to connect board
# 4. Click on the green run arrow button below to run the script!
import sensor, image, time, lcd
lcd.init(freq=15000000)
sensor.reset() # Reset and initialize the sensor. It will
# run automatically, call sensor.run(0) to stop
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.skip_frames(time = 2000) # Wait for settings take effect.
clock = time.clock() # Create a clock object to track the FPS.
while(True):
clock.tick() # Update the FPS clock.
img = sensor.snapshot() # Take a picture and return the image.
lcd.display(img) # Display on LCD
print(clock.fps()) # Note: MaixPy's Cam runs about half as fast when connected
# to the IDE. The FPS should increase once disconnected.</code></pre>
<p> </p>
</div>
<div> </div>
<div>连接好硬件,然后开始运行</div>
<div></div>
<div>可以进数据采集和处理啦</div>
<div></div>
<p>这运行起来,发热量如何?是不是可以烤鸡蛋。</p>
lugl4313820 发表于 2024-7-20 11:51
这运行起来,发热量如何?是不是可以烤鸡蛋。
<p>烤鸡蛋不至于,但是烫手。</p>
<p>特别是摄像头背面~~~</p>
<p>代码的缩进要注意下下,Python 的缩进要求还是很严格的 </p>
页:
[1]