采用电压反馈放大器 (VFA) 来设计一个优质的电流到电压 (跨导放大器) 转换器是一项重大的挑战。理论上,一个光电二极管当曝露在光线中时可产生一个电流或电压输出,而跨导放大器 (TIA) 便是将这个很弱的电流转换成一个可用的电压信号,通常跨导放大器均需经过补偿才能正常工作。本文将会探讨一个用 345 MHz 的轨到轨输出,电压反馈放大器 (例如是美国国家半导体的 LMH6611)来实现的简单 TIA 设计,并提供 TIA 设计所必需的信息,讨论 TIA 的补偿和性能结果,以及分析 TIA 输出端的噪声。
图 1 所示为一个用电压反馈放大器构建的带有光电二极管等效电容和运放输入电容的 TIA 模型。
毫无疑问,在设计时必须考虑所有的噪声来源。当分析 TIA 输出的噪声时,必须注意运算放大器噪声电压、反馈电阻器热噪声、输入噪声电流和光电二极管噪声电流都不是全部工作在同一个频率范围。运算放大器的噪声电压将会在噪声增益的零
点和极点之间的区域被放大,而 RF 和 CT的数值越高,则噪声增益的峰值便越早出现,从而对整体输出噪声的贡献亦越大。
通过计算 TIA 输出处所有有贡献的噪声电压之方均根值,便可得出等效的总噪声电压值。
总括来说,总电容 (CT) 对于 TIA 的稳定性起了很重要的作用,CT 愈小那稳定性便愈高,而把 CT 尽量降低有两个方法,一是选择合适的运算放大器,二是施加一个反向偏压给光二极管,但这会引致有过量的电流和噪声出现。本文证实从实验中不同光二极管和补偿方法得出来的测量结果与理论非常吻合。