发表于2024-4-24 11:15
显示全部楼层
最新回复
以下是一个深度学习数学基础入门的学习大纲:1. 线性代数基础学习向量、矩阵的定义和运算规则。理解线性变换、矩阵乘法和逆矩阵的概念。掌握特征值、特征向量以及奇异值分解等重要概念。2. 微积分基础复习导数和微分的定义及性质。学习多元函数的偏导数和梯度。了解微分的链式法则和求导的应用。3. 概率与统计基础学习概率的基本概念和常见分布,如高斯分布、泊松分布等。理解统计学中的基本概念,如期望、方差、协方差等。掌握最大似然估计、贝叶斯推断等统计方法。4. 优化理论学习优化问题的基本概念,如凸优化、非凸优化等。掌握常见的优化算法,如梯度下降、随机梯度下降、牛顿法等。了解优化问题在深度学习中的应用,如参数优化和模型训练。5. 线性代数在深度学习中的应用理解神经网络中的线性变换和矩阵运算。学习神经网络中的参数初始化和权重更新规则。探索卷积神经网络(CNN)和循环神经网络(RNN)中的线性代数应用。6. 微积分在深度学习中的应用理解神经网络中的梯度下降和反向传播算法。学习优化算法中的数值计算和收敛性分析。探索微积分在神经网络训练和优化中的应用。7. 概率与统计在深度学习中的应用理解神经网络中的随机性和不确定性。学习概率图模型在深度学习中的应用。探索贝叶斯方法和概率编程在深度学习中的应用。8. 持续学习与实践深入学习深度学习模型和算法背后的数学原理。在实际项目中应用所学的数学知识,不断提升数学建模和问题解决能力。通过这个学习大纲,你可以系统地学习和掌握深度学习所需的数学基础知识,为深入理解和应用深度学习提供坚实的数学基础。祝你学习顺利!
详情
回复
发表于 2024-5-15 12:44
| |
|
|
发表于2024-4-24 14:35
显示全部楼层
此帖出自问答论坛
| ||
|
||
发表于2024-4-27 11:15
显示全部楼层
此帖出自问答论坛
| ||
|
||
发表于2024-5-15 12:44
显示全部楼层
此帖出自问答论坛
| ||
|
||
EEWorld Datasheet 技术支持
EEWorld订阅号
EEWorld服务号
汽车开发圈
机器人开发圈