【米尔-全志 T527 开发板-试用评测】-OpenCV行人检测
[复制链接]
一、软件环境安装
1.安装OpenCV
sudo apt-get install libopencv-dev python3-opencv
2.安装pip
sudo apt-get install python3-pip
二、行人检测概论
使用HOG和SVM构建行人检测器的关键步骤包括:
准备训练数据集:训练数据集应包含大量正样本(行人图像)和负样本(非行人图像)。
计算HOG特征:对于每个图像,计算HOG特征。HOG特征是一个一维向量,其中每个元素表示图像中特定位置和方向的梯度强度。
训练SVM分类器:使用HOG特征作为输入,训练SVM分类器。SVM分类器将学习区分行人和非行人。
评估模型:使用测试数据集评估训练后的模型。计算模型的准确率、召回率和F1分数等指标。
三、代码实现
import cv2
import time
def detect(image,scale):
imagex=image.copy() #函数内部做个副本,让每个函数运行在不同的图像上
hog = cv2.HOGDescriptor() #初始化方向梯度直方图描述子
#设置SVM为一个预先训练好的行人检测器
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
#调用函数detectMultiScale,检测行人对应的边框
time_start = time.time() #记录开始时间
#获取(行人对应的矩形框、对应的权重)
(rects, weights) = hog.detectMultiScale(imagex,scale=scale)
time_end = time.time() #记录结束时间
# 绘制每一个矩形框
for (x, y, w, h) in rects:
cv2.rectangle(imagex, (x, y), (x + w, y + h), (0, 0, 255), 2)
print("sacle size:",scale,",time:",time_end-time_start)
name=str(scale)
cv2.imshow(name, imagex) #显示原始效果
image = cv2.imread("back.jpg")
detect(image,1.01)
detect(image,1.05)
detect(image,1.3)
cv2.waitKey(0)
cv2.destroyAllWindows()
四、实际操作
|