- 2024-11-05
-
发表了主题帖:
磁性元件老大难?看看下面这些资料,帮你顺利通关~
磁性元件经典书籍推荐:
《开关电源中磁性元器件》南京航空航天大学自动化学院 赵修科 主编
《开关电源磁性元件理论及设计》周洁敏、赵修科、陶思钰 著 北京航空航天大学出版社
视频教程:
开关电源中的磁性元件
本系列介绍了磁的基本概念、电路中的磁元件、开关电源中磁性材料的基本参数、开关电源中常见的磁性材料、变压器中的分布参数及线圈、变压器损耗及热设计、高频开关电源磁芯的工作状态、直流滤波电感设计、反激变压器电感设计举例、高频变压器设计
口碑好贴好资料:
磁性元件资料、磁性元件资料 21篇
各种电源拓扑磁性元件的伏秒平衡(图文)
开关电源中高频磁性元件设计常见错误概念辨析
开关电源磁性元件设计
实用电源技术手册磁性元器件分册
磁性体手册
高频功率磁性材料特性与应用
TDK磁性材料与骨架(很好)
半桥变换器磁性元件的设计
反激和半桥磁性元件设计资料
磁性器件的特性和计算
高频变压器磁性手册大全
磁性变压器技术要求和绕制工艺
反激磁性元件设计
磁性元件内部培训教材.pdf
高低频电路中的磁性元件之反激式变压器电感开发指导
磁性元件非线性与电感器,变压器之研究
-
加入了学习《开关电源中的磁性元件》,观看 磁的基本概念(一)
-
回复了主题帖:
来聊一聊如何提升充电桩的充电效率?
qwqwqw2088 发表于 2024-10-24 17:51
硬件升级,包括电源、变压器、直流接口等关键部件,提升充电桩内部硬件设计的效率,减少能量在传输过程中的 ...
成本还是要考虑的。不知道现有的充电桩除了替换掉还有什么在原件上提高效率的办法
-
回复了主题帖:
白皮书分享!无刷直流电机及其驱动器的设计挑战与注意事项
谢谢分享~~收了
-
回复了主题帖:
减少74%损耗!Qorvo家这款SiC FET 产品厉害了!
这个看介绍真的很不错~
-
回复了主题帖:
说一说,你是怎么学习变压器设计的?
变压器绕起来,实践起来更有体会
-
回复了主题帖:
来聊一聊如何提升充电桩的充电效率?
增加功率呀~你看现在各种快充超充,你就会发现功率是一直在提高的。
-
回复了主题帖:
#反激大作战#来聊一聊,在设计反激电源的时候,你觉得最重要的是什么?
变压器吧~这个是比较重要的~
-
回复了主题帖:
给大家整了一波新能源汽车BMS方面的干货!赶紧来收!
mark一下~~好资料
-
回复了主题帖:
SiC与ZVS软开关电路更配!——谈怎么提高ZVS电路效率
用不用PWM要看下成本要求吧。如果财大气粗当然是上PWM比较好
-
回复了主题帖:
反激电源几个重要的公式的总结
这个分享不错~收藏了
-
回复了主题帖:
分享一本不过时的《电源管理基础Dummies®》
好书!谢谢分享~
- 2024-10-30
-
发表了主题帖:
拯救电源EMI的铁三角:电感、磁珠、电容
拯救电源EMI的铁三角:电感、磁珠、电容
引言
滤波电容器、共模电感、磁珠在EMC设计电路中是常见的身影,也是消灭电磁干扰的三大利器。对于这这三者在电路中的作用细节,相信还有很工程师一知半解。本文从设计设计中,详细分析了拯救电源EMI的铁三角:电感、磁珠、电容。
铁三角之滤波电容器
尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。
在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。微信公众号:电源联盟。普通电容之所以不能有效地滤除高频噪声,是因为两个原因,一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果。
穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题,而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。
铁三角之共模电感
由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一,共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。微信公众号:电源联盟。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。
共模电感在制作时应满足以下要求:
1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。
2)当线圈流过瞬时大电流时,磁芯不要出现饱和。
3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。
4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。
通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。微信公众号:电源联盟。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。
铁三角之磁珠
在开关电源电路EMC设计过程中,我们常常会使用到磁珠,铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。
铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振,因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小。但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。
铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。微信公众号:电源联盟。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。
使用片式磁珠还是片式电感主要还在于实际应用场合。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。片式磁珠和片式电感的应用场合:片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。
磁珠的单位是欧姆,因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如是在100MHz频率的时候磁珠的阻抗相当于1000欧姆。针对我们所要滤波的频段需要选取磁珠阻抗越大越好,通常情况下选取600欧姆阻抗以上的。
另外选择磁珠时需要注意磁珠的通流量,一般需要降额80%处理,用在电源电路时要考虑直流阻抗对压降影响。
-
发表了主题帖:
LLC 谐振变换器拓扑构成与工作原理分析
点此下载完整内容:https://www.eeworld.com.cn/zt/Qorvo_Power/details/7328
内容节选:
........
点此下载完整内容:https://www.eeworld.com.cn/zt/Qorvo_Power/details/7328
- 2024-10-29
-
发表了主题帖:
开关电源上拉电阻和上拉电阻电路图解
开关电源中有很多电阻,那么这些电阻都起到什么作用呢?先了解上拉电阻和下拉电阻,那么为什么需要上拉电阻和下拉电阻呢?
看下面的电路图
R3就是上拉电阻,B点电压在三极管不导通时是12V,当A点电压超过0.6V,三极管就会导通,B点电压为0.3V.
实际这个电路也是一个反相器,输入高电平,输出低电平,输入可以是一个电压如3.3V,输出电压可以是5-24V,实现电压转换控制。
有上拉电阻
这个上拉电阻就是把B点电压拉高到12V,如果没有这颗电阻,三极管不会导通,B点也不会有电压。
没有上拉电阻
有很多芯片都是集电极开漏输出,需要加上拉电阻,那么为什么不在内部直接做好呢?
在设计电路时,上拉电阻要接不同的电压,如24V,12V,5V,3.3V,根据后级电路需要,连接不同的电压,提供一个稳定的信号电平。阻值通常在1K-100K,根据上拉的速度选择,阻值大,上升沿缓慢,阻值小,上升沿很快。
图中R2就是下拉电阻
下拉电阻的作用是保证三极管不会误导通,由于上电的一瞬间A点信号还不稳定,可能会有一个干扰信号,触发导通三极管,这在电路中是不可以发生的情况,当三极管误导通,会改变电路的状态,在电源电路中,还会引起炸机的风险。
上拉电阻就是连接电源的一端,下拉电阻就是连接到GND,给电路一个稳定的信号,或者是电源电压,或者是GND,提供一个稳定的信号状态,确定的电压值,接受外部信号电压的控制。这个上拉电阻和下拉电阻的阻值比较大,多以不会对输入信号有影响。
观察开关电源中,有哪些是上拉电阻,哪些是下拉电阻。
免责声明
注:来源@思创电子,本文仅代表作者观点,请读者仅作参考并自行核实其真实性及合法性。如有问题联系管理员删除
- 2024-10-28
-
发表了主题帖:
七千字讲完19种电压转换的电路设计方法
标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成:
技巧1:使用LDO稳压器,从5V电源向3.3V系统供电
标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成:
导通晶体管
带隙参考源
运算放大器
反馈电阻分压器
在选择 LDO 时,重要的是要知道如何区分各种LDO。器件的静态电流、封装大小和型号是重要的器件参数。根据具体应用来确定各种参数,将会得到最优的设计。
LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。IGND 是 LDO 用来进行稳压的电流。当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。然而,轻载时,必须将 IQ 计入效率计算中。具有较低 IQ 的 LDO 其轻载效率较高。轻载效率的提高对于 LDO 性能有负面影响。静态电流较高的 LDO 对于线路和负载的突然变化有更快的响应。
技巧2:采用齐纳二极管的低成本供电系统
这里详细说明了一个采用齐纳二极管的低成本稳压器方案。
可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1 所示。在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。另外,它的能效较低,因为 R1 和 D1 始终有功耗。R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD 保持在允许范围内。由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。
R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。同时,在最小负载时——通常是 PICmicro MCU 复位时——VDD 不超过齐纳二极管的额定功率,也不超过 PICmicro MCU的最大 VDD。
技巧3:采用3个整流二极管的更低成本供电系统
图 3-1 详细说明了一个采用 3 个整流二极管的更低成本稳压器方案。
我们也可以把几个常规开关二极管串联起来,用其正向压降来降低进入的 PICmicro MCU 的电压。这甚至比齐纳二极管稳压器的成本还要低。这种设计的电流消耗通常要比使用齐纳二极管的电路低。
所需二极管的数量根据所选用二极管的正向电压而变化。二极管 D1-D3 的电压降是流经这些二极管的电流的函数。连接 R1 是为了避免在负载最小时——通常是 PICmicro MCU 处于复位或休眠状态时——PICmicro MCU VDD 引脚上的电压超过PICmicro MCU 的最大 VDD 值。根据其他连接至VDD 的电路,可以提高R1 的阻值,甚至也可能完全不需要 R1。二极管 D1-D3 的选择依据是:在最大负载时——通常是 PICmicro MCU 运行且驱动其输出为高电平时——D1-D3 上的电压降要足够低从而能够满足 PICmicro MCU 的最低 VDD 要求。
技巧4:使用开关稳压器,从5V电源向3.3V系统供电
如图 4-1 所示,降压开关稳压器是一种基于电感的转换器,用来把输入电压源降低至幅值较低的输出电压。输出稳压是通过控制 MOSFET Q1 的导通(ON)时间来实现的。由于 MOSFET 要么处于低阻状态,要么处于高阻状态 (分别为 ON 和OFF),因此高输入源电压能够高效率地转换成较低的输出电压。
当 Q1 在这两种状态期间时,通过平衡电感的电压- 时间,可以建立输入和输出电压之间的关系。
对于 MOSFET Q1,有下式:
在选择电感的值时,使电感的最大峰 - 峰纹波电流等于最大负载电流的百分之十的电感值,是个很好的初始选择。
在选择输出电容值时,好的初值是:使 LC 滤波器特性阻抗等于负载电阻。这样在满载工作期间如果突然卸掉负载,电压过冲能处于可接受范围之内。
在选择二极管 D1 时,应选择额定电流足够大的元件,使之能够承受脉冲周期 (IL)放电期间的电感电流。
数字连接: 在连接两个工作电压不同的器件时,必须要知道其各自的输出、输入阈值。知道阈值之后,可根据应用的其他需求选择器件的连接方法。表 4-1 是本文档所使用的输出、输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。
技巧5:3.3V→5V直接连接
将 3.3V 输出连接到 5V 输入最简单、最理想的方法是直接连接。直接连接需要满足以下 2 点要求:
• 3.3V输出的 VOH 大于 5V 输入的 VIH
• 3.3V输出的 VOL 小于 5V 输入的 VIL
能够使用这种方法的例子之一是将 3.3V LVCMOS输出连接到 5V TTL 输入。从表 4-1 中所给出的值可以清楚地看到上述要求均满足。
3.3V LVCMOS 的 VOH (3.0V)大于 5V TTL 的VIH (2.0V)且3.3V LVCMOS 的 VOL (0.5V)小于 5V TTL 的VIL (0.8V)。
如果这两个要求得不到满足,连接两个部分时就需要额外的电路。可能的解决方案请参阅技巧 6、7、 8 和 13。
技巧6:3.3V→5V使用MOSFET转换器
如果 5V 输入的 VIH 比 3.3V CMOS 器件的 VOH 要高,则驱动任何这样的 5V 输入就需要额外的电路。图 6-1 所示为低成本的双元件解决方案。
在选择 R1 的阻值时,需要考虑两个参数,即:输入的开关速度和 R1 上的电流消耗。当把输入从 0切换到 1 时,需要计入因 R1 形成的 RC 时间常数而导致的输入上升时间、 5V 输入的输入容抗以及电路板上任何的杂散电容。输入开关速度可通过下式计算:
由于输入容抗和电路板上的杂散电容是固定的,提高输入开关速度的惟一途径是降低 R1 的阻值。而降低 R1 阻值以获取更短的开关时间,却是以增大5V 输入为低电平时的电流消耗为代价的。通常,切换到 0 要比切换到 1 的速度快得多,因为 N 沟道 MOSFET 的导通电阻要远小于 R1。另外,在选择 N 沟道 FET 时,所选 FET 的 VGS 应低于3.3V 输出的 VOH。
技巧7:3.3V→5V使用二极管补偿
表 7-1 列出了 5V CMOS 的输入电压阈值、 3.3VLVTTL 和 LVCMOS 的输出驱动电压。
从上表看出, 5V CMOS 输入的高、低输入电压阈值均比 3.3V 输出的阈值高约一伏。因此,即使来自 3.3V 系统的输出能够被补偿,留给噪声或元件容差的余地也很小或者没有。我们需要的是能够补偿输出并加大高低输出电压差的电路。
输出电压规范确定后,就已经假定:高输出驱动的是输出和地之间的负载,而低输出驱动的是 3.3V和输出之间的负载。如果高电压阈值的负载实际上是在输出和 3.3V 之间的话,那么输出电压实际上要高得多,因为拉高输出的机制是负载电阻,而不是输出三极管。
如果我们设计一个二极管补偿电路 (见图 7-1),二极管 D1 的正向电压 (典型值 0.7V)将会使输出低电压上升,在 5V CMOS 输入得到 1.1V 至1.2V 的低电压。它安全地处于 5V CMOS 输入的低输入电压阈值之下。输出高电压由上拉电阻和连至3.3V 电源的二极管 D2 确定。这使得输出高电压大约比 3.3V 电源高 0.7V,也就是 4.0 到 4.1V,很安全地在 5V CMOS 输入阈值 (3.5V)之上。
注:为了使电路工作正常,上拉电阻必须显著小于 5V CMOS 输入的输入电阻,从而避免由于输入端电阻分压器效应而导致的输出电压下降。上拉电阻还必须足够大,从而确保加载在 3.3V 输出上的电流在器件规范之内。
技巧8:3.3V→5V使用电压比较器
比较器的基本工作如下:
• 反相 (-)输入电压大于同相 (+)输入电压时,比较器输出切换到 Vss。
• 同相 (+)输入端电压大于反相 (-)输入电压时,比较器输出为高电平。
为了保持 3.3V 输出的极性, 3.3V 输出必须连接到比较器的同相输入端。比较器的反相输入连接到由 R1 和 R2 确定的参考电压处,如图 8-1 所示。
计算R1和R2: R1 和 R2 之比取决于输入信号的逻辑电平。对于3.3V 输出,反相电压应该置于VOL 与VOH之间的中点电压。对于 LVCMOS 输出,中点电压为:
如果 R1 和 R2 的逻辑电平关系如下:
若 R2 取值为 1K,则 R1 为 1.8K。
经过适当连接后的运算放大器可以用作比较器,以将 3.3V 输入信号转换为 5V 输出信号。这是利用了比较器的特性,即:根据 “反相”输入与 “同相”输入之间的压差幅值,比较器迫使输出为高(VDD)或低 (Vss)电平。
注: 要使运算放大器在 5V 供电下正常工作,输出必须具有轨到轨驱动能力。
技巧9:5V→3.3V直接连接
通常 5V 输出的 VOH 为 4.7 伏, VOL 为 0.4 伏;而通常 3.3V LVCMOS 输入的 VIH 为 0.7 x VDD, VIL为 0.2 x VDD。
当 5V 输出驱动为低时,不会有问题,因为 0.4 伏的输出小于 0.8 伏的输入阈值。当 5V 输出为高时, 4.7 伏的 VOH 大于 2.1 伏 VIH,所以,我们可以直接把两个引脚相连,不会有冲突,前提是3.3V CMOS 输出能够耐受 5 伏电压。
如果 3.3V CMOS 输入不能耐受 5 伏电压,则将出现问题,因为超出了输入的最大电压规范。可能的解决方案请参见技巧 10-13。
技巧10:5V→3.3V使用二极管钳位
很多厂商都使用钳位二极管来保护器件的 I/O 引脚,防止引脚上的电压超过最大允许电压规范。钳位二极管使引脚上的电压不会低于 Vss 超过一个二极管压降,也不会高于 VDD 超过一个二极管压降。要使用钳位二极管来保护输入,仍然要关注流经钳位二极管的电流。流经钳位二极管的电流应该始终比较小 (在微安数量级上)。如果流经钳位二极管的电流过大,就存在部件闭锁的危险。由于5V 输出的源电阻通常在 10Ω 左右,因此仍需串联一个电阻,限制流经钳位二极管的电流,如图 10-1所示。使用串联电阻的后果是降低了输入开关的速度,因为引脚 (CL)上构成了 RC 时间常数。
如果没有钳位二极管,可以在电流中添加一个外部二极管,如图 10-2 所示。
技巧11:5V→3.3V有源钳位
使用二极管钳位有一个问题,即它将向 3.3V 电源注入电流。在具有高电流 5V 输出且轻载 3.3V 电源轨的设计中,这种电流注入可能会使 3.3V 电源电压超过 3.3V。
为了避免这个问题,可以用一个三极管来替代,三极管使过量的输出驱动电流流向地,而不是 3.3V 电源。设计的电路如图 11-1 所示。
Q1的基极-发射极结所起的作用与二极管钳位电路中的二极管相同。区别在于,发射极电流只有百分之几流出基极进入 3.3V 轨,绝大部分电流都流向集电极,再从集电极无害地流入地。基极电流与集电极电流之比,由晶体管的电流增益决定,通常为10-400,取决于所使用的晶体管。
技巧12:5V→3.3V电阻分压器
可以使用简单的电阻分压器将 5V 器件的输出降低到适用于 3.3V 器件输入的电平。这种接口的等效电路如图 12-1 所示。
通常,源电阻 RS 非常小 (小于 10Ω),如果选择的 R1 远大于 RS 的话,那么可以忽略 RS 对 R1 的影响。在接收端,负载电阻 RL 非常大 (大于500 kΩ),如果选择的R2远小于RL的话,那么可以忽略 RL 对 R2 的影响。
在功耗和瞬态时间之间存在取舍权衡。为了使接口电流的功耗需求最小,串联电阻 R1 和 R2 应尽可能大。但是,负载电容 (由杂散电容 CS 和 3.3V 器件的输入电容 CL 合成)可能会对输入信号的上升和下降时间产生不利影响。如果 R1 和 R2 过大,上升和下降时间可能会过长而无法接受。
如果忽略 RS 和 RL 的影响,则确定 R1 和 R2 的式子由下面的公式 12-1 给出。
公式 12-2 给出了确定上升和下降时间的公式。为便于电路分析,使用戴维宁等效计算来确定外加电压 VA 和串联电阻 R。戴维宁等效计算定义为开路电压除以短路电流。根据公式 12-2 所施加的限制,对于图 12-1 所示电路,确定的戴维宁等效电阻 R 应为 0.66R1,戴维宁等效电压 VA 应为0.66VS。
例如,假设有下列条件存在:
• 杂散电容 = 30 pF
• 负载电容 = 5 pF
• 从 0.3V 至 3V 的最大上升时间 ≤ 1 μs
• 外加源电压 Vs = 5V
确定最大电阻的计算如公式 12-3 所示。
技巧13:3.3V→5V电平转换器
尽管电平转换可以分立地进行,但通常使用集成解决方案较受欢迎。电平转换器的使用范围比较广泛:有单向和双向配置、不同的电压转换和不同的速度,供用户选择最佳的解决方案。
器件之间的板级通讯 (例如, MCU 至外设)通过 SPI 或 I2C™ 来进行,这是最常见的。对于SPI,使用单向电平转换器比较合适;对于 I2C,就需要使用双向解决方案。下面的图 13-1 显示了这两种解决方案。
模拟: 3.3V 至 5V 接口的最后一项挑战是如何转换模拟信号,使之跨越电源障碍。低电平信号可能不需要外部电路,但在 3.3V 与 5V 之间传送信号的系统则会受到电源变化的影响。例如,在 3.3V 系统中,ADC转换1V峰值的模拟信号,其分辨率要比5V系统中 ADC 转换的高,这是因为在 3.3V ADC 中,ADC 量程中更多的部分用于转换。但另一方面,3.3V 系统中相对较高的信号幅值,与系统较低的共模电压限制可能会发生冲突。
因此,为了补偿上述差异,可能需要某种接口电路。本节将讨论接口电路,以帮助缓和信号在不同电源之间转换的问题。
技巧14:3.3V→5V模拟增益模块
从 3.3V 电源连接至 5V 时,需要提升模拟电压。33 kΩ 和 17 kΩ 电阻设定了运放的增益,从而在两端均使用满量程。11 kΩ 电阻限制了流回 3.3V 电路的电流。
技巧15:3.3V→5V模拟补偿模块
该模块用于补偿 3.3V 转换到 5V 的模拟电压。下面是将 3.3V 电源供电的模拟电压转换为由 5V电源供电。右上方的 147 kΩ、 30.1 kΩ 电阻以及+5V 电源,等效于串联了 25 kΩ 电阻的 0.85V 电压源。这个等效的 25 kΩ 电阻、三个 25 kΩ 电阻以及运放构成了增益为 1 V/V 的差动放大器。0.85V等效电压源将出现在输入端的任何信号向上平移相同的幅度;以 3.3V/2 = 1.65V 为中心的信号将同时以 5.0V/2 = 2.50V 为中心。左上方的电阻限制了来自 5V 电路的电流。
技巧16:5V→3.3V有源模拟衰减器
此技巧使用运算放大器衰减从 5V 至 3.3V 系统的信号幅值。
要将 5V 模拟信号转换为 3.3V 模拟信号,最简单的方法是使用 R1:R2 比值为 1.7:3.3 的电阻分压器。然而,这种方法存在一些问题。
一是,衰减器可能会接至容性负载,构成不期望得到的低通滤波器。二是,衰减器电路可能需要从高阻抗源驱动低阻抗负载。
无论是哪种情形,都需要运算放大器用以缓冲信号。所需的运放电路是单位增益跟随器 (见图 16-1)。
电路输出电压与加在输入的电压相同。
为了把 5V 信号转换为较低的 3V 信号,我们只要加上电阻衰减器即可。
如果电阻分压器位于单位增益跟随器之前,那么将为 3.3V 电路提供最低的阻抗。此外,运放可以从3.3V 供电,这将节省一些功耗。如果选择的 X 非常大的话, 5V 侧的功耗可以最大限度地减小。
如果衰减器位于单位增益跟随器之后,那么对 5V源而言就有最高的阻抗。运放必须从 5V 供电,3V 侧的阻抗将取决于 R1||R2 的值。
技巧17:5V→3.3V模拟限幅器
在将 5V 信号传送给 3.3V 系统时,有时可以将衰减用作增益。如果期望的信号小于 5V,那么把信号直接送入 3.3V ADC 将产生较大的转换值。当信号接近 5V 时就会出现危险。所以,需要控制电压越限的方法,同时不影响正常范围中的电压。这里将讨论三种实现方法:
一是,使用二极管,钳位过电压至 3.3V 供电系统。
二是,使用齐纳二极管,把电压钳位至任何期望的电压限。
三是,使用带二极管的运算放大器,进行精确钳位。
进行过电压钳位的最简单的方法,与将 5V 数字信号连接至 3.3V 数字信号的简单方法完全相同。使用电阻和二极管,使过量电流流入 3.3V 电源。选用的电阻值必须能够保护二极管和 3.3V 电源,同时还不会对模拟性能造成负面影响。
如果 3.3V 电源的阻抗太低,那么这种类型的钳位可能致使3.3V 电源电压上升。即使 3.3V 电源有很好的低阻抗,当二极管导通时,以及在频率足够高的情况下,当二极管没有导通时 (由于有跨越二极管的寄生电容),此类钳位都将使输入信号向 3.3V 电源施加噪声。
为了防止输入信号对电源造成影响,或者为了使输入应对较大的瞬态电流时更为从容,对前述方法稍加变化,改用齐纳二极管。齐纳二极管的速度通常要比第一个电路中所使用的快速信号二极管慢。不过,齐纳钳位一般来说更为结实,钳位时不依赖于电源的特性参数。钳位的大小取决于流经二极管的电流。这由 R1 的值决定。如果 VIN 源的输出阻抗足够大的话,也可不需要 R1。
如果需要不依赖于电源的更为精确的过电压钳位,可以使用运放来得到精密二极管。电路如图 17-3所示。运放补偿了二极管的正向压降,使得电压正好被钳位在运放的同相输入端电源电压上。如果运放是轨到轨的话,可以用 3.3V 供电。
由于钳位是通过运放来进行的,不会影响到电源。
运放不能改善低电压电路中出现的阻抗,阻抗仍为R1 加上源电路阻抗。
技巧18:驱动双极型晶体管
在驱动双极型晶体管时,基极 “驱动”电流和正向电流增益 (Β/hFE)将决定晶体管将吸纳多少电流。如果晶体管被单片机 I/O 端口驱动,使用端口电压和端口电流上限 (典型值 20 mA)来计算基极驱动电流。如果使用的是 3.3V 技术,应改用阻值较小的基极电流限流电阻,以确保有足够的基极驱动电流使晶体管饱和。
RBASE的值取决于单片机电源电压。公式18-1 说明了如何计算 RBASE。
如果将双极型晶体管用作开关,开启或关闭由单片机 I/O 端口引脚控制的负载,应使用最小的 hFE规范和裕度,以确保器件完全饱和。
3V 技术示例:
对于这两个示例,提高基极电流留出裕度是不错的做法。将 1 mA 的基极电流驱动至 2 mA 能确保饱和,但代价是提高了输入功耗。
技巧19:驱动N沟道MOSFET晶体管
在选择与 3.3V 单片机配合使用的外部 N 沟道MOSFET 时,一定要小心。MOSFET 栅极阈值电压表明了器件完全饱和的能力。对于 3.3V 应用,所选 MOSFET 的额定导通电阻应针对 3V 或更小的栅极驱动电压。
例如,对于具有 3.3V 驱动的100 mA负载,额定漏极电流为250 μA的FET在栅极 - 源极施加 1V 电压时,不一定能提供满意的结果。在从 5V 转换到 3V 技术时,应仔细检查栅极- 源极阈值和导通电阻特性参数,如图 19-1 所示。稍微减少栅极驱动电压,可以显著减小漏电流。
对于 MOSFET,低阈值器件较为常见,其漏-源电压额定值低于 30V。漏-源额定电压大于 30V的 MOSFET,通常具有更高的阈值电压 (VT)。
如表 19-1 所示,此 30V N 沟道 MOSFET 开关的阈值电压是 0.6V。栅极施加 2.8V 的电压时,此MOSFET 的额定电阻是 35 mΩ,因此,它非常适用于 3.3V 应用。
对于 IRF7201 数据手册中的规范,栅极阈值电压最小值规定为 1.0V。这并不意味着器件可以用来在1.0V 栅 - 源电压时开关电流,因为对于低于 4.5V 的VGS(th),没有说明规范。对于需要低开关电阻的 3.3V 驱动的应用,不建议使用 IRF7201,但它可以用于 5V 驱动应用。
- 2024-10-27
-
发表了主题帖:
几个最为常见的放大器电路设计问题,你掉过坑吗?
与分立半导体组件相比,使用运算放大器和仪表放大器能给设计师带来显著优势。虽然有关电路应用的著述颇丰,但由于设计电路时往往匆忙行事,因而忽视了一些基本问题,结果使电路功能与预期不符。
1. 缺少直流偏置电流回路
最常见的应用问题之一是在交流耦合运算放大器或仪表放大器电路应用中,没有为偏置电流提供直流回路。图1中,一个电容串接在一个运算放大器的同相(+)输入端,这种交流耦合是隔离输入电压(VIN)中的直流电压的一种简单方法。这种方法在高增益应用中尤为有用,在增益较高时,即使是放大器输入端的一个较小直流电压,也会影响运放的动态范围,甚至可能导致输出饱和。然而,容性耦合进高阻抗输入端而不为正输入端中的电流提供直流路径的做法会带来一些问题。
图1 错误的交流耦合运算放大器电路
那么如何解决可能出现的问题呢?小A为大家提供一种简单的解决方案。
如图2所示,一个电阻连接在运算放大器的输入端与地之间,从而为输入偏置电流提供了一个回路。在使用双极性运放的时候,为最小化输入偏置电流导致的失调电压,考虑到运放两个输入端的匹配问题,通常将R1设为R2和R3的并联值。但要注意的是,该电阻始终会给电路带来一定噪声,因而需在电路输入阻抗、所需输入耦合电容大小与电阻引进的约翰逊噪声之间进行权衡,典型电阻值一般在100,000Ω至 1 MΩ之间。
图2 双电源供电运算放大器输入端交流耦合的正确方法
2. 为仪表放大器、运算放大器和ADC提供基准电压
小A再来向大家介绍第二种可能出现的问题。
图3所示的是一个单电源电路,是用一个仪表放大器驱动一个单端模数转换器(ADC)。放大器基准电压源提供零差分输入时的偏置电压,而ADC基准电压源则提供比例因子,通常在仪表放大器输出端与ADC输入端之间使用一个简单的RC低通抗混叠滤波器来降低带外噪声。设计师一般倾向于采取简单的办法,比如利用电阻分压,来为仪表放大器和ADC提供基准电压。但在某些仪表放大器应用中,这种方法有可能导致误差。
图3 典型单电源电路中仪表放大器驱动ADC
通常认为仪表放大器基准输入端是高阻抗,因为它是一个输入端口,因此,设计师可能将高阻抗源,比如电阻分压器连接至仪表放大器的基准电压引脚。但对于某些类型的仪表放大器,这可能导致严重错误。
图4 不恰当的使用简单分压器来直接驱动三运放结构仪表放大器的基准引脚
图5 利用运算放大器的低阻抗输出端驱动仪表放大器的基准引脚
图5给出了一种较好的解决方案,该方案在分压器与仪表放大器基准输入端之间采用了一个低功耗运放缓冲器。这种方法消除了阻抗匹配和温度跟踪问题,并且允许轻松调节基准电压。
此外,在设计电路时,需要考虑电源抑制(PSR)技术,在这一过程中,同样也会出现意料之外的“坑”,小A在此介绍两种情况:
3. 在利用电阻分压供电电源给运放提供基准的情况下保持PSR
一个经常被忽视的问题是,电源电压VS的噪声、跳变或漂移会反馈到基准输入端进而直接叠加到输出上,仅受分压比影响而衰减。实际的解决方案包括采用旁路和滤波器,甚至用高精度的基准IC来产生基准电压,而不是对VS进行分压,在设计同时采用仪表放大器和运算放大器的电路时,这种考虑非常重要。电源抑制(PSR)技术可将放大器与电源嗡嗡声、噪声以及跳变电压隔离,这一点非常重要,因为许多实际电路都包含、连接至或存在于电源电压不够理想的环境。除此之外,电源线路中存在的交流信号可能流回电路并被放大,在某种条件下,还可能激发寄生振荡。
图6 对基准电路进行去耦处理以维持PSR
在图6中,一个大电容被加至分压器,以滤除电源变化,从而使PSR保持不变。该滤波器的−3 dB极点由R1/R2并联组合及电容CF设定,该极点应设为低于所关心的最低频率10 倍左右。
4. 对单电源运算放大器电路进行去耦
单电源运算放大器电路要求对输入共模电平进行偏置以处理正负摆动的交流信号,当采用电阻分压供电电源的方法来提供偏置时,必须进行足够的去耦处理,以维持PSR不变。一种常见的但是错误的做法是通过一个带有0.1 μF旁路电容的100 kΩ/100 kΩ分压电路,来向运算放大器的同相端提供VS/2偏置,如果使用这些值,电源去耦往往显得不足,因为其极点频率仅为32 Hz。
图7 单电源同相放大器电路的正确去耦方法 Midband Gain = 1 + R2/R1
图8 单电源反相放大器电路的正确去耦方法 Midband Gain = –R2/R1
当电路工作在不稳定的环境下,图7(同相放大)和图8(反相放大)给出了如何获得最佳效果的VS/2去耦偏置电路。两种情况下,偏置功能均由同相输入端提供,反馈使反相输入端获得相同的偏置,而单位直流增益则将输出偏置为同一电压。耦合电容C1与BW3一致,滚降低频增益。如图7所示,在使用100kΩ/100 kΩ电阻分压电路的时候,一条经验法则是,使用值至少为10 μF的C2,实现0.3 Hz时有 −3 dB的滚降特性。实际上,100μF(0.03 Hz极点频率)的值就足以应付所有电路了。
- 2024-10-26
-
发表了主题帖:
buck电源纹波电压与电感有什么关系?
纹波电压是指输出电压中含有的微量的电压变动成分,这些电压变动与开关频率同步发生,理想情况下的纹波电压为零。这是因为,如果纹波电压变动较大并低于负载端的系统最低工作电压,将会导致系统运作出现异常。近年,DC-DC转换器的低电压、大电流化正呈发展趋势,因此有必要为其提供更加稳定的电压。
图3-3-1 什么是纹波电压
和验证效率时一样,下面将就电感的变化对纹波电压产生的影响进行调查。
图3-3-2 通过仿真实验进行的纹波电压评估
仿真软件 : LTSPICE
DC-DC转换器 : Switch model
工作频率 : 4MHz
输入电压 : 3.6V
输出电压:1.8V
输出电流Iout : 2A
电感 : 0.47/1.0/2.2µH
通过图3-3-3,可知电感越高,纹波电压的抑制效果就越好。电感越高,流过电感器的纹波电流就越能得到抑制,因此输出的纹波电压也会随之减少。须注意的是,电感会因直流叠加特性而下降。使用直流叠加特性较差的元件会导致电感下降、纹波电压增加。因此,很显然在进行选择时要确保Isat大于负载电流。
图3-3-3 纹波电压和电感
- 2024-10-25
-
发表了主题帖:
干货!PWM控制原理及电路应用详解
PWM(脉冲宽度调制)是用脉冲来输出模拟信号的一种技术,其通过对一系列脉冲的宽度进行调制,以产生等效的目标波形,广泛应用于测量、通信、开关电源、电机控制等领域。
本文将对PWM技术的基本控制原理以及常见的电路应用进行分享。
PWM基本控制原理
01.理论基础
面积等效原理:冲量相等而形状不同的窄脉冲作用在具有惯性的环节上时,其作用效果基本相同。其中“冲量”是指窄脉冲的面积,而“效果基本相同”是指环节的输出响应波形基本相同。
将图中所示电压窄脉冲,分别作用在一阶惯性环节(下图(a))上,各窄脉冲的输出电流i(t)响应波形如下图(b)所示。
可以看出在最初暂态时,它们的响应波形略有差别,但后续的响应波形则完全一致。
所施加的脉冲越窄,输出响应的波形差异越小。如果周期性地施加上述脉冲,则响应也是周期性的。用傅里叶级数进行响应信号分解后可知,响应在低频段的特性将非常接近,仅在高频段有所不同。
02
控制原理
基于面积等效原理,PWM通过对一系列脉冲宽度进行调制,产生与目标波形脉冲冲量相等的窄脉冲波形,从而实现目标波形(含形状和幅值)的等效。
这里以常用的正弦半波等效为例进行调制过程介绍:
首先,将正弦半波均等分割成N个相连的宽度相等幅值不同的脉冲。然后,用N个等幅不等宽的矩形脉冲对其进行代替,矩形脉冲的中点与相应正弦波脉冲的中点重合,且两者面积(冲量)相等。
这样,即可获得与正弦半波等效的一系列PWM波形——SPWM波形,SPWM波形的脉冲宽度按正弦规律变化。
除了正弦波外,PWM技术还可对直流以及非正弦交流等波形进行等效,其基本原理与SPWM控制相同,都是基于面积等效原理。
PWM技术应用
PWM斩波电路与PWM逆变电路是PWM技术的最典型的两种电路应用。
目前,实际应用的逆变电路中绝大部分是PWM型,而在直流电动机调速中PWM斩波电路得到了广泛应用。此外,基于PWM技术的斩控式交流调压电路和矩阵式变频电路在交流-交流变换领域中均有应用。
下面对典型的直流斩波电路以及PWM逆变电路进行介绍。
01.直流斩波电路
常用的直流斩波电路有:Buck电路、Boost电路、Buck-Boost电路、Cuk斩波电路以及Sepic斩波电路等。
这里以Buck直流斩波电路为例进行讲解,电路结构如下图所示:
图中:V为全控型器件,D为续流二极管。
当器件处于导通状态时,电源向负载供电,并给电容充电,二极管电压VD=Vin;当器件处于关断状态时,电容给负载供电,二极管电压近似为0。
若周期性的给开关器件开通与关断信号,输出电压波形如右图所示。电源在导通时间ton内被接通,在关断时间T- ton内被截断,因此也称为斩波。
输出电压的平均值为:
可见,直流斩波电路可以通过调节开关器件的开通与关断时间,从而调节输出电压平均值,获得所需的直流电压波形。
02
PWM逆变电路
常用的PWM逆变电路控制方法有计算法与调制法两种。其中,计算法过程繁琐且当输出正弦波形变化时需要重新进行计算,因此常用调制法进行PWM逆变电路控制。
下面对单相桥式逆变电路的SPWM调制过程以及三相桥式逆变电路的SVPWM调制过程进行讲解。
▍单相桥式逆变电路
将期望的输出信号作为调制信号,采用等腰三角波或锯齿波作为载波信号,以两种信号的交点控制开关器件的通断,将得到一系列宽度正比于信号波幅值的PWM脉冲。
具体调制过程如下:
在调制信号ur正半周时:
开关器件V1保持导通,V2与V3保持关断,V4根据调制波与载波之间的关系交替导通。
当|Ur|>|Uc|时,V4开通,负载电压Uo=Ud;当|Ur|<|Uc|时,V4关断,负载电流将通过二极管D3续流,此时负载电压Uo=0。输出电压Uo为0和Ud电平交替的波形。
在调制信号ur负半周时:
开关器件V2保持导通,V1与V4保持关断,V3根据调制波与载波之间的关系交替导通。
当|Ur|>|Uc|时,V3开通,负载电压Uo=-Ud;当|Ur|<|Uc|时,V3关断,D4续流,此时负载电压Uo=0。输出电压Uo为0和-Ud电平交替的波形。
在调制信号波ur一个整周期内,逆变器输出的PWM波形由±Ud和0三种电平构成。
▍三相桥式逆变电路
除了上述的SPWM正弦脉冲宽度调制技术外,SVPWM空间矢量脉宽调制技术在电机控制领域中也十分常用。
SPWM是通过在电机定子中通入相位互差120°的正弦波,从而在空间上产生一个旋转磁动势带动转子旋转。而SVPWM的则是通过设置开关管的通断在电机中形成一个旋转的电压矢量,从而产生一个旋转的磁动势。
SVPWM的具体实施方法如下:
电路由六个开关器件构成,上下管为一组形成三个半桥电路,同一半桥的上下桥臂不能同时导通或断开。
定义上桥臂导通,下桥臂关断时状态为1,上桥臂关断,下桥臂导通时状态为0,则可以得到8种电压状态(000、100、110、010、011、001、101、111)。其中,000与111为零矢量,其他六种为非零电压矢量,将空间电压矢量图划分为6个扇区。
SVPWM的实现过程中:
首先,根据转子的位置和采集的电流数据来确定需要给定的Uα和Uβ值,接着确定由Uα和Uβ合成的电压U所处的扇区。
然后,根据确定的扇区选择合成电压U所需的电压矢量(U1~U6),并依据矢量合成的关系计算出开关器件的保持时间。
最后,根据这些计算结果控制开关器件的通断,以实现预期的电压U输出。
常用拓扑调制方式
若将PWM控制技术应用于不同的电力拓扑,控制信号的调制方式会有所差异。
常用的调制方式包括:移相调制、脉冲频率调制、脉冲宽度调制、单极性倍频调制和双极性调制等,这些调制方式在PPEC数字电源控制芯片中均有成熟的封装可直接应用,为数字电源研发提供了高效、稳定、可靠的解决方案。
接下来我们对部分常用电力拓扑的调制方式进行介绍:
▍移相全桥拓扑:采用移相调制方式,通过调节桥臂开关器件PWM信号的相位差(即移相角),改变原边输出电压占空比,从达到调节输出电压的目的。
▍LC串联谐振拓扑:采用脉冲频率调制方式,通过控制PWM信号的频率fs 实现输出电压的调节。在实际应用中常工作于0~0.5倍谐振频率fr模式以及开关频率fs高于谐振频率fr模式。
▍LLC谐振拓扑:常采用脉冲频率调制方式,通过控制PWM信号的频率fs实现输出电压的调节。变换器常工作于欠谐振模式、准谐振模式及过谐振模式。
▍逆变/整流拓扑:常采用单极倍频调制及双极性调制方式。单极倍频调制采用两个基波信号(ug 、-ug)与载波信号交截得到两个调制信号,两个信号相互作用产生单极倍频调制信号。双极性调制信号由一个基波与载波交截产生,其波形在半个基波周期内有正有负。
▍buck-boost拓扑:常采用脉冲宽度调制(PWM)及脉冲频率调制(PFM)方式。PWM采用恒定的开关频率,通过调节脉冲宽度(占空比)的方法来实现输出电压调节。PFM通过调节开关频率以实现输出电压调节。
PWM技术的基本控制原理以及常见的电路应用就分享到这里了。需要注意的是,尽管PWM控制技术简化了电力变换过程,具有稳定性好、效率高、可靠性高等优点,但PWM技术的实现对开关器件的要求较高且电路噪声较大。因此,在应用中大家要根据实际需求选择合适的控制方式。
- 2024-10-24
-
发表了主题帖:
DC-DC电路设计技巧及器件选型
一.概念及特点
1
概念
DC-DC指直流转直流电源(Direct Current)。是一种在直流电路中将一个电压值的电能变为另一个电压值的电能的装置。如,通过一个转换器能将一个直流电压(5.0V)转换成其他的直流电压(1.5V或12.0V),我们称这个转换器为DC-DC转换器,或称之为开关电源或开关调整器。
DC-DC转换器一般由控制芯片,电感线圈,二极管,三极管,电容器构成。在讨论DC-DC转换器的性能时,如果单针对控制芯片,是不能判断其优劣的。其外围电路的元器件特性,和基板的布线方式等,能改变电源电路的性能,因此,应进行综合判断。
DC-DC转换器的使用有利于简化电源电路设计,缩短研制周期,实现最佳指标等,被广泛用于电力电子、军工、科研、工控设备、通讯设备、仪器仪表、交换设备、接入设备、移动通讯、路由器等通信领域和工业控制、汽车电子、航空航天等领域。具有可靠性高、系统升级容易等特点,电源模块的应用越来越广泛。此外,DC-DC转换器还广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。在电路类型分类上属于斩波电路。
2
特点
其主要特点是效率高:与线性稳压器的LDO相比较,效率高是DCDC的显著优势。通常效率在70%以上,效率高的可达到95%以上。其次是适应电压范围宽。
A: 调制方式
1: PFM(脉冲频率调制方式)
开关脉冲宽度一定,通过改变脉冲输出的频率,使输出电压达到稳定。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。
2: PWM(脉冲宽度调制方式)
开关脉冲的频率一定,通过改变脉冲输出宽度,使输出电压达到稳定。PWM控制型效率高并具有良好的输出电压纹波和噪声。
B: 通常情况下,采用PFM和PWM这两种不同调制方式的DC-DC转换器的性能不同点如下。
PWM的频率,PFM的占空比的选择方法。PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。
二.架构分类
1
常见的三种原理架构
A、 Buck(降压型DC/DC转换器)
图1
B、Boost(升压型DC/DC转换器)
图2
C、Buck-Boost(升降压型DC/DC转换器)
图3
2
Buck电路工作原理详解
图4
伏秒平衡原则:处于稳定状态的电感,电感两端的正伏秒积等于负伏秒积,即:电感两端的伏秒积在一个开关周期内必须平衡。
图5
当开关导通时:输入电压Vin加到LC滤波器的输入端,电感上的电流以固定斜率线性上升。如下图
图6
当开关关断时:由于电感上的电流不能突变,电感中存储的能量向负载释放,电感电流通过二极管续流 ,在这个阶段,电流波形是一条斜率为负的斜线。如下图
图7
三.设计技巧及主要技术参数选用要求
DC-DC电路设计至少要考虑以下条件:
A.外部输入电源电压的范围,输出电流的大小。
B. DC-DC输出的电压,电流,系统的功率最大值。
1
输入/输出电压
要按照器件的推荐工作电压范围选用,并且要考虑实际电压的波动范围,确保不能超出器件规格。
2
输出电流
器件持续的输出电流能力是一个重要的参数,选用时要参考此参数,并要保留一定的余量。
此参数的选取还要评估电路的瞬间峰值电流和发热的情况,综合来确定,并满足降额要求。
3
纹波
纹波是衡量电路的输出电压波动的重要参数。要关注轻载和重载纹波,一般轻载纹波要大。注意核电等场合下轻载纹波是否会超出要求。实际测试下各种场景负载下的情况。通常选用示波器20M带宽来测试。
4
效率
要同时关注轻载和重载两种情况。轻载会影响待机功率,重载影响温升。通常看12V输入,5V输出下10mA的效率,一般要80%以上。
5
瞬态响应
瞬态响应特性反应负载剧烈变化时系统是否能及时调整以保证输出电压的稳定。要求输出电压波动越小越好,一般按峰峰值10%以下要求。
实际要注意按推荐值选用反馈电容。常见取值在22p到120pF。
图9
6
开关频率
常用的开关频率多数在500kHz以上。较高的开关频率1.2M到2M的也有,由于频率高开关损耗增加IC散热设计要好,故主要集中在5V低压输入小电流的产品。开关频率关系到电感电容的选用,其它如EMC,轻载下噪音等问题也与之有关。
7
反馈参考电压及精度
反馈电压要与内部的参考电压相比较,配合外部的反馈分压电阻,输出不同电压。不同产品的参考电压会有不同,如0.6~0.8V,替换时注意调整反馈电阻。
反馈电阻要选用1%精度,只要根据厂家推荐来选,一般不要选的过大,以免影响稳定性。
参考电压精度影响输出准确度,常见精度在2%以下,如1%~1.5%,精度高的产品成本会有差别。根据需要选择。
8
线性稳定度和负载稳定度
线性稳定度反应输入电压变化输出电压稳定性。负载稳定度反应输出负载变化输出电压稳定性。一般要求1%,最大不要超3%。
9
EN电平
EN高低电平要满足器件规格要求,有些IC不能超出特定电压范围;电阻分压时注意满足及时关断,并且考虑电压波动最大范围内要满足。
由于时序控制的需要,该引脚会增加电容,为了电平调节和关断放电,同时要有对地电阻。
10
保护性能
要有过流保护OCP,过热保护OTP等,并且保护后条件消失能自恢复。
11
其它
要求有软启动;热阻和封装;使用温度范围要能覆盖高低温等。
四.器件选型一般原则
✔ 普遍性
✔ 高性价比
✔ 易采购生命周期长
✔ 兼容和可替代
✔ 资源节约
✔ 降额
✔ 易生产和归一化
五.外围器件选择的要求
1
输入电容
要满足耐压和输入纹波的要求。一般耐压要求1.5~2倍以上输 入电压。注意瓷片电容的实际容量会随直流电压的偏置影响而减少。
2
输出电容
要满足耐压和输出纹波的要求。一般耐压要求1.5~2倍
纹波和电容的关系:
3
BST电容
按照规格书推荐值。一般0.1uF-1uF。耐压一般要高于输入电压。
4
电感
不同输出电压的要求电感量不同;注意温升和饱和电流要满足余量要求,一般最大电流的1.2倍以上(或者电感的饱和电流必须大于最大输出电流+0.5*电感纹波电流)。通常选择合适的电感值L,使ΔIL占输出电流的30% to 50%。计算公式:
5
VCC电容
按规格书 要求取值,不能减小,也不要太大,注意耐压。
6
反馈电容
按规格书 要求取值,不同厂家芯片取值不同,输出电压不同也会有不同的要求。
7
反馈电阻和EN分压电阻
要求按规格书取值,精度1%。
六.PCB设计要求
1.输入电容就近放在芯片的输入Vin和功率的PGND,减少寄生电感的存在,因为输入电流不连续,寄生电感引起的噪声对芯片的耐压以及逻辑单元造成不良影响 。电容地端增加过孔,减少阻抗。
2.功率回路尽可能的短粗,保持较小的环路面积,较少噪声辐射。SW是噪声源,保证电流的同时保持尽量小的面积,远离敏感的易受干扰的位置。如,电感靠近SW引脚,远离反馈线。输出电容靠近电感,地端增加地过孔。
3. VCC电容应就近放置在芯片的VCC管脚和芯片的信号地之间,尽量在一层,不要有过孔。
4.FB是芯片最敏感,最容易受干扰的部分,是引起系统不稳定的最常见原因 。
1)FB电阻连接到FB管脚尽可能短,靠近IC放置,减少噪声的耦合;FB下分压电阻通常接信号地AGND;
2)远离噪声源,SW点,电感,二极管(非同步buck);FB走线包地;
3)大电流负载的FB在负载远端取,反馈电容走线要就近取。
5.BST的电容走线尽量短,不要太细。
6.芯片散热要按设计要求,尽量在底下增加过孔散热。