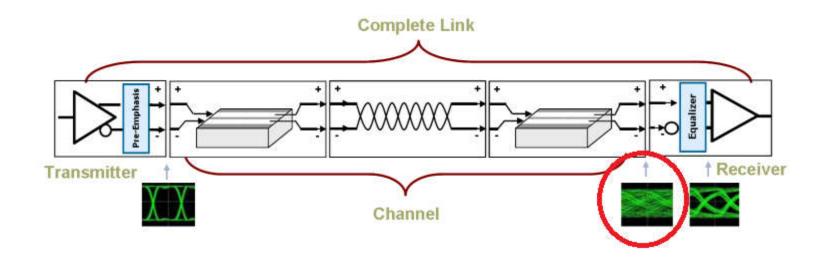

Tektronix

PCI Express Rx Solutions

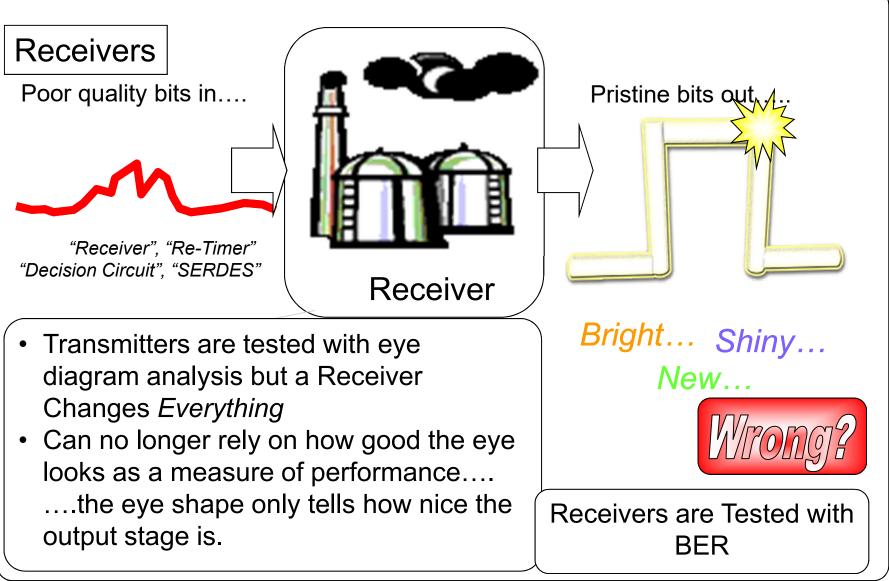
X

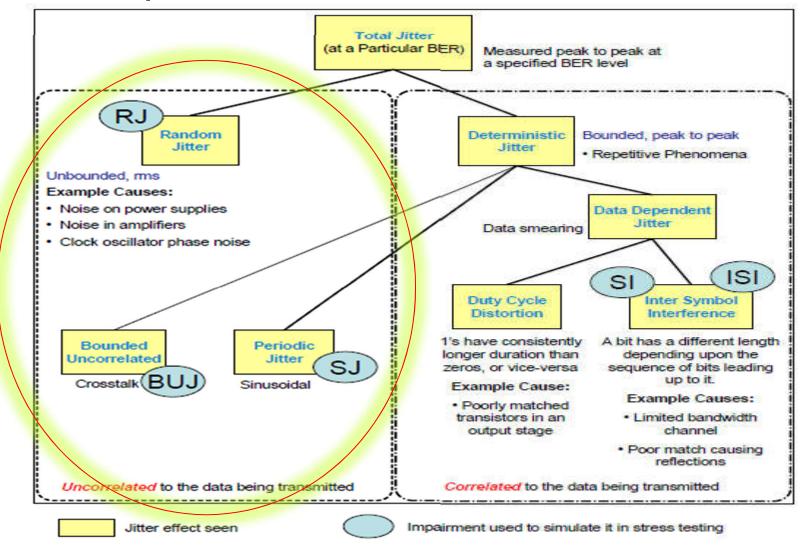
- ➡ 1. PCIe overview
 - 2. Why test receivers
 - 3. Challenges
 - 4. How to address the challenges
 - 5. Solution for Physical Layer test of PCIe Rx
 - 6. Why Tektronix

	PCI Express 1.0	PCI Express 2.0	PCI Express 3.0	PCI Express 4.0
Bit Rate	2.5GT/S	5GT/S	8GT/s	16GT/S
Encoding/Decoding	8B/10B	8B/10B	128B/130B	128B/130B
Overhead	20%	20%	1.5625%	1.5625%
Scrambling	Optional	Optional	Always	Always
Data Throughput (Effective Bit Rate)	4Gb/s per lane	4Gb/s per lane	7.88Gb/s per lane	15.75Gb/s per lane
Equalization	TX: -3.5dB RX: None	TX: -3.5dB, -6dB RX: None	TX: 3 Tap FIR RX: CTLE + 1 Tap DFE	TX: 3 Tap FIR RX: CTLE + 1 Tap DFE
Transmission path	Same as Gen1	Same as Gen1	Same as Gen1	Same as Gen1
Transmitter Testing	Normative	Normative	Normative	Normative
Receiver Testing	Informative	Informative	Normative	Normative



- 1. PCIe overview
- ➡ 2. Why test Receivers
 - 3. Challenges
 - 4. How to address the challenges
 - 5. Solution for Physical Layer test of PCIe Rx
 - 6. Why Tektronix


Why TEST Receivers


The increase in digital transmission speed and throughput introduces significant signal integrity challenges (connector crosstalk, receiver jitter sensitivity, and overall channel insertion loss etc.) related to transmitter signal quality around the Nyquist frequency at the PCIe standard operates, the receiver side will not get an opening eye and error free.

Why TEST Receivers

What causes "poor bits"?

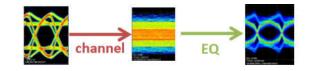
X

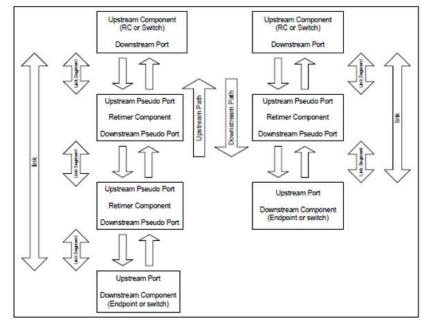
Why TEST Receivers

- Gen4 Datacenter Standards are driving Receiver Testing Needs
- With increasing speeds, Gen 4 standards receivers and transmitters must communicate—handshake—to optimize channel performance.
 - Link equalization training is an example of optimization in Gen4 standards.
- BERTs used in Gen 4 receiver testing must participate in handshaking to ensure proper test configuration.
 - This requires that the BERT understand the protocol and be able to modify the test conditions based on the requirements of the device under test.

- 1. PCIe overview
- 2. Why test Receivers
- ➡ 3. Challenges
 - 4. How to address the challenges
 - 5. Solution for Physical Layer test of PCIe Rx
 - 6. Why Tektronix

Signal integrity

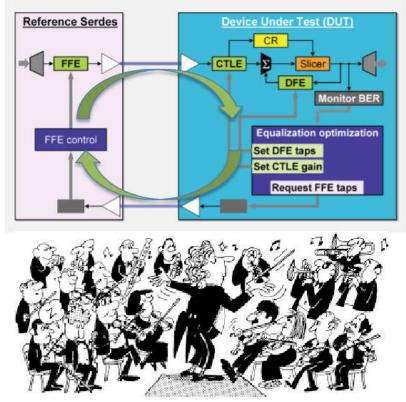

 Increasingly lossy channels and increasingly data rates (-28dB for PCIe 4.0 CEM and -36dB for PCIe 5.0)


Need to open eye at end of the channel Different types of IC's used:

- Redriver—no clock-data recovery (CDR)
- Clock-synchronous retimer—has CDR, clocks data to recovered clock
- Clock-compensating retimer—has CDR, clocks data to ref clock

Some combination of SERDES, CDR, and CTLE/DFE equalization capability to open eye after lossy channel

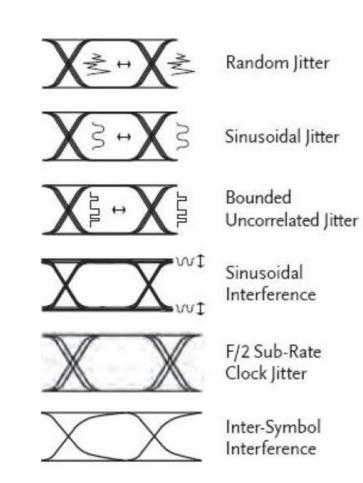
- CTLE = continuous time linear equalization
- DFE = decision feedback equalizer



Entire link (including repeaters) requires link training capability

- Adaptive, optimizing equalization that requires coordination of Tx and Rx for each link at power up and recovery
- Precise orchestration of FFE, CTLE, CR, slicer, and DFE functionality is essential,
- Data stream/protocol management (scrambling, sequencing, encoding test patterns)

NRZ (non-return to zero) symbol decoders/bit slicers with 15mVpp sensitivity for PCIe 4.0 and 10mVpp sensitivity for 32GT/s



Receiver margin testing requires calibrated insertion of various stresses for worst-case compliance testing:

- Inter-Symbol Interference (ISI)
- Random Jitter (RJ),
- Sinusoidal Jitter (SJ),
- Common-mode/Differential mode Interference (CMI/DMI)

Reference receiver models assist in calibrating compliance test conditions (eg Seasim/SigTest)

 Models include the transmitted signal, applied stresses, and channel response to the receiver input pins

Requires Protocol Awareness

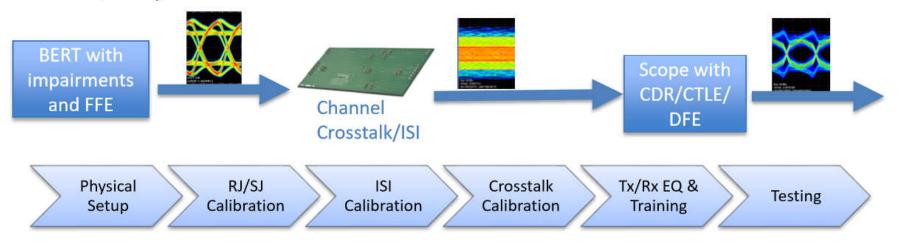
Need Automated Solutions for Gen3 and Gen4 Standards

Go beyond compliance

- 1. Putting device into loopback
- 2. Performing Link Equalization
- 3. Easy Setup
- 4. Auto calibration of stresses to get correct stress and signal impairment levels.
- 5. Making accurate and repeatable measurements for large number of test cases
- Root-causing factors leading to biterror or link training problems. Uncertain debug times can lead to product development delays.

ERROR BIT	EXPECTED
LOCATION	BIT
200,457	0
1,247,356	1
1,447,890	0
3,885,245	0
4,001,876	1
8,233,191	0

- 1. PCIe standard overview
- 2. Why test Receivers
- 3. Challenges
- \Rightarrow 4. How to address the challenges
 - 5. Solution for Physical Layer test of PCIe Rx
 - 6. Why Tektronix



How to address the challenges

Need fully integrated test system, including HW and SW solutions

- Reliably put device under test into loopback mode
- Facilitate link equalization training to optimize the channel, including built-in TXEQ and RXEQ optimization
- o Calibrate and sweep full suite of impairments (ISI, RJ, DMSI, CMI)
- Debug DUT-specific problems with BER, FEC, and link training

Solution must cover multiple standards and spec generations (eg PCIe 3.0-4.0, etc)

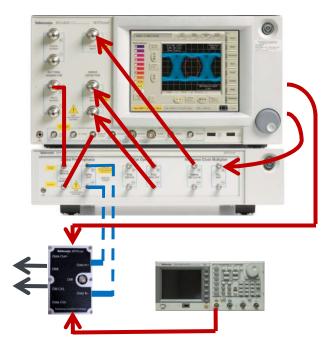
- 1. PCIe overview
- 2. Why test Receivers
- 3. Challenges
- 4. How to address the challenges
- **5**. Solution for Physical Layer test of PCIe Rx
 - 6. Why Tektronix

Tektronix Receiver Test Solution

Simplified testing

- Full-rate output and built-in calibrated impairments up to 32GT/s
- Reference clock multiplication and interference generation
- Protocol Awareness with pattern sequencer
- One instrument for PCle 3.0 and beyond Rx testing needs
 - Automates running of compliance tests
 - PCle 3.0 and 4.0
 - Automated calibration wizard

• Sophisticated error analysis tools


- Pattern Sensitivity
- Error Free Interval Tool
- Forward error correction emulation

BERTScope

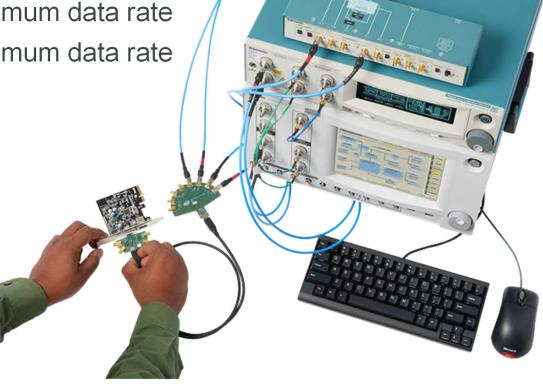
Previous BERTScope Gen3 BASE Solution

Rx calibration and test automation

- PCle Gen3 & 4 & 5
- USB 3.0 &3.1
- SAS 12G and 22.5G

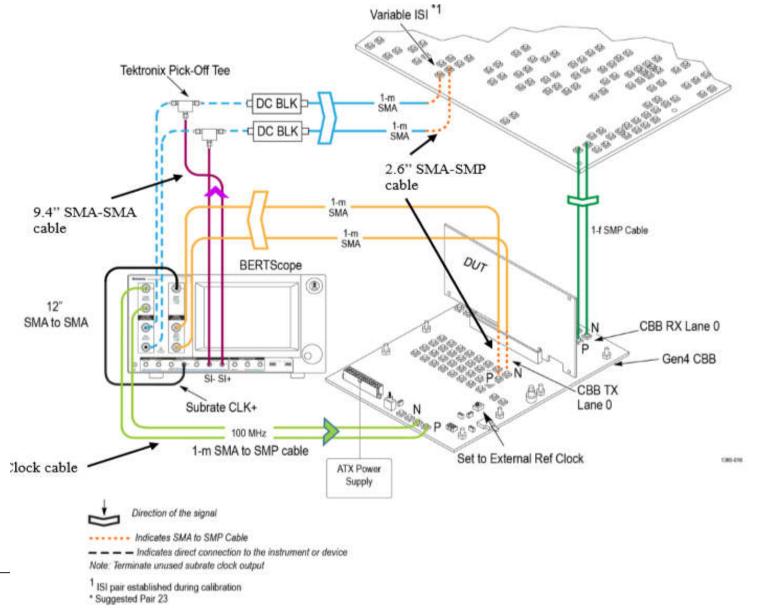
Drop two boxes and 6 external cables

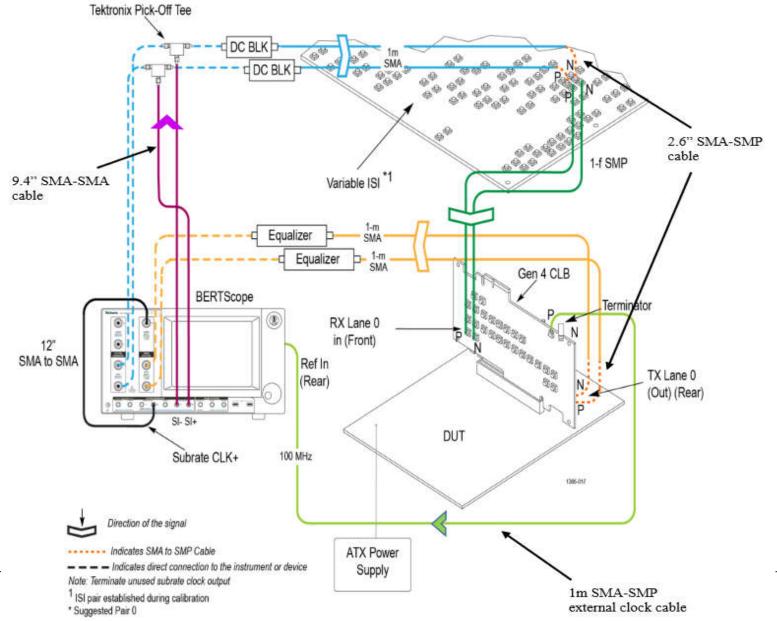
BSX-series BERTScope Gen3/4 BASE



- Built-in 4-tap Deemphasis/equalization
- Built-in programmable reference clock multiplier
- Up to 32 Gb/s in the case of the BSX320 version
- Link training via handshaking support to 32 Gb/s in only available from Tektronix
- Compliant link training
- Built-in DMSI and CMSI source
- Margin testing above 16 Gb/s
- 50 mV to 1.8V (single-ended) output amplitude

BSX-series BERTScope


- Three versions are offered:
 - BSX125, 12.5 Gb/s maximum data rate
 - BSX240, 24 Gb/s maximum data rate
 - BSX320, 32 Gb/s maximum data rate


Connection Diagrams (Add-in Card)

X

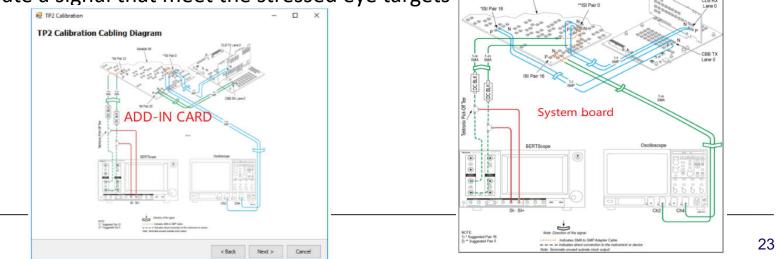
Connection Diagrams (System board)


X

Calibration (TP1 calibration)

During this process, the Rx-Test app calibrates the following items:

- Amplitude The differential voltage swing is required to be within 720 800 mV. This is required to be done only after the transition and non-transition bit levels are made equal using a small amount of de-emphasis.
- 2. Tx Equalization Presets The various levels of de-emphasis and pre-shoot are required to be calibrated within the tolerance as specified.
- **3. SJ** The SJ is calibrated over the desired range of 5-10 ps (p-p) including the nominal SJ specification of 0.1 UI (or 3.125 ps) at 100 MHz frequency. 4. RJ It is calibrated to be 1 ps (RMS value).



Calibration (TP2 calibration)

During this process, the Rx-Test app calibrates the following items:

- DMSI The differential mode sinusoidal interference is required to be calibrated within 10-25 mV (p-p) by capturing the 2.1 GHz sinusoidal output for a duration of at least 125 us.
- 2. CMI The common mode sinusoidal interference is required to be calibrated for a nominal voltage of 150 mV (p-p) by capturing the 120 MHz sinusoidal output for a duration of at least 125 us.
- **3. Optimum equalizer selection** Tx Equalization Presets P5 and P6 are used to find the optimal Eye Area with the optimal CTLE
- 4. Stressed-Eye calibration Based upon the procedure mentioned in the specification, various signal parameters and stress levels are computed to generate a signal that meet the stressed eye targets

Calibration (TP2 calibration)

Channel Loss Computation & ISI Pair Iteration. The Rx-Test app provides the facility to automatically compute and present the total physical channel loss in the TP2 set-up to the user. Selection of optimum physical channel loss (obtained by means of changing the ISI pair), optimum CTLE and Preset is a pre-requisite to obtain the stressed eye as per the specification.

H TP2 Calibration

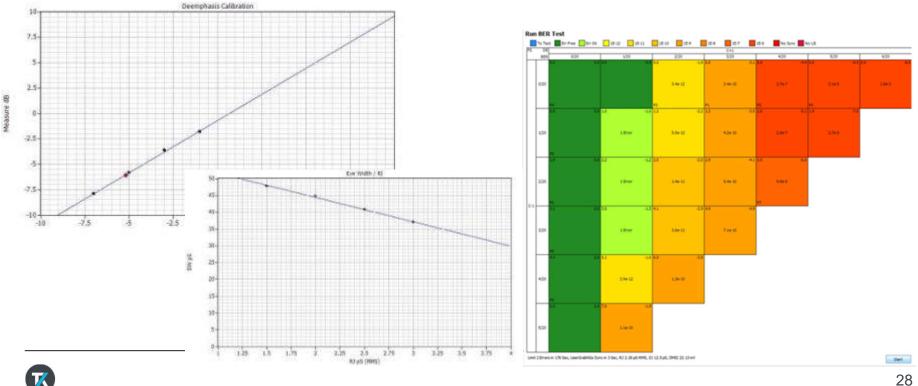
M2 Calibration	P2 Calibration						
Channel Loss Computation & ISI Pair Iteration	Optimal Sig	Test CTLE	and Preset Se	election			
1. This module returns the total physical channel loss in the present set-up	Description	Preset	CTLE	EW (ps)	EH (mV)	EA	
2. The user can decide whether to proceed further with the loss or to suitably change the ISI pair number	1	P5	9.25	23.5	16.6	389	
	2	P5	9.25	23.2	16.6	386	
3. The user can skip the procedure if the physical channel loss is already known	3	P5	9.25	22.2	9.7	216	-
In the event of an error/undesired observation during the loss computation, for example:	AVERAGE(1	PS	9.25	23.0	14.3	328	
 a. Waveform data is not available for analysis 	4	P5	9.50	23.4	16.7	391	
(i) Check presence of trigger	5	P5	9.50	22.4	16.3	364	
(ii) Check availability of waveform in the path	6	P5	9.50	21.9	15.9	347	
b. Communication error between the loss computation module and SigTest service due to time-o	AVERAGE(4	P5	9.50	22.6	16.3	367	
	7	P5	9.75	23,1	18.5	427	
 The current SigTest service needs to be terminated and re-launched 	8	P5	9.75	22.0	19.1	420	
c. Very high/unexpected loss	9	P5	9.75	21.1	15.2	321	
(i) Check for loose connections	AVERAGE(7	PS	9.75	22.1	17.6	388	
(i) Faulty cables	10	P5	10.00	21.3	16.7	357	
	11	P5	10.00	20.9	14.5	303	
(II)Component failures	12	P5	10.00	19.1	17.5	336	
	AVERAGE(1	P5	10.00	20.5	16.2	332	7
Skp	View	Preset	CTLE	DFE		_	
	Table	 F6 	• 9.25 💠	þo.o 💠	W	0	ancel

Calibration (example. PCIe4.0 CEM Calibration)

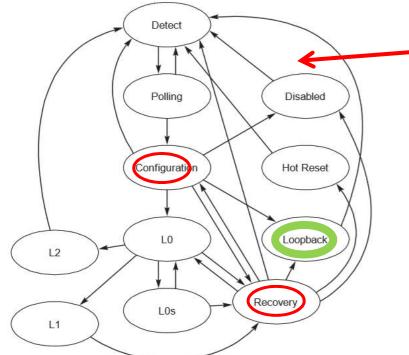
- Calibrate Amplitude, Rj, Sj@100MHz (1m cable to oscilloscope)
 - Amplitude = 800mVpp
 - RJ = 1ps RMS
 - SJ @ 100MHz = 0.1UI
- Establish 30dB, 28dB and 27dB channels
- Vary the CBB Variable ISI Pair
- BERT -> 1m SMA cable -> Variable ISI brd -> 1 foot SMP cable -> CBB Rx Lane0 -> CLB Tx Lane0 -> 1ft SMP cable -> Variable ISI brd -> 1m SMA cable to Scope (embedding refpkg model)
- Calibrate DMI (14mV) and CMI (150mV) @ end of channel
- Find Optimal Tx EQ Preset (27db channel)
- Increase channel loss from 27 -30dB using the Variable ISI board
- Find loss where EW/EH drop below targets and step back one pair
- Ensure Preset is still optimal
- Vary the following until EW(18.75 +/-0.5)/EH (15mV +/-1.5) targets are met
 - Sj (5-10ps)
 - DMI (10-25mV)
 - Amplitude (720-800mV)
- Record Final Settings

Rx Testing Summary

- Certainly the most complex type of testing
 - Due to complexity of equipment and procedures
- Extensive correlation studies in PCI-SIG have helped to streamline solutions
 - Similar stress signals
 - Guided calibration and test execution
 - Good correlation on the latest workshop
 - Link Equalization detail and BER test matrix go beyond compliance testing and give visibility into DUT behavior and margins
- Successful Rx compliance and margin test gives you the confidence that the device passes when you get to the workshop



- 1. PCIe overview
- 2. Why test Receivers
- 3. Challenges
- 4. How to address challenges
- 5. Solution for Physical Layer test of PCIe Rx
- **6**. Why Tektronix



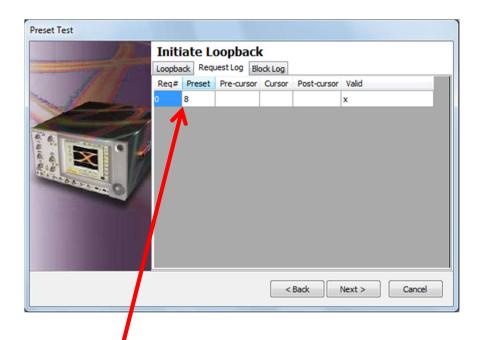
The Smartest Automation SW

- Automated calibration, link training, loopback initiation, and testing.
- BER Map feature for TxEQ optimization. •
- Reduces the time and minimizes the skill-set required to perform the • calibration and testing.
- Increases the reliability and accuracy by removing inconsistencies with manual calibration.

Automated Link Equalization

- Set-up for loopback initiation with automated link equalization
 - Step 1: select "use link eq."
 - Step 2: initiate loopback

- State diagram based on spec
 - Implemented in Tektronix PCIe Rx test hardware and automation software
 - 2 paths to Loopback, either via Configuration or Recovery


All All	Configure Loopback			
3/1	Basic Advanced Block Log			
ALC.	Vise Link Equalization			
	Link # 0 🜩	Preset	P7 💌	
0.	Lane # 0 🗇	Preshoot	3.50 🜲	dB
	FTS 255 🚔	Deemphasis	-6.00	dB
and the second	🔲 Find Safe Sampling Point	Preset/Hint	P0_0 👻	
	Plant la. effa. 196			

Automated Link Equalization

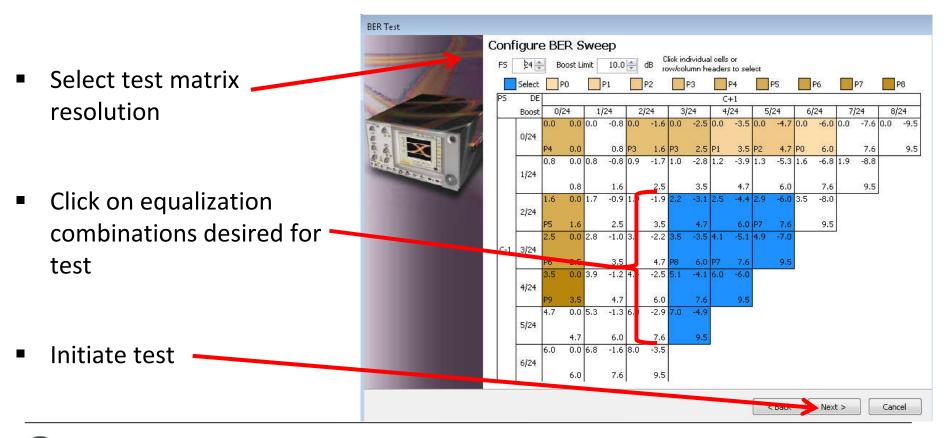
• Loopback results: automation software provides complete equalization request log

	Initi	ate L	oopbac	ĸ			
	Loopba	ck Req	uest Log Bl	ock Log			
	Req#	Preset	Pre-cursor	Cursor	Post-cursor	Valid	
a that	128		0x6	0x2E	0xB	x	
Contraction of the	129		0x6	0x2D	0xC	x	1
	130		0x6	0x2C	0xD	x	1
	131	Snip	0x6	0x2B	0xE	x	1
	132		0x6	0x2A	0xF	x	1
	133		0x7	0x38	0x0	x	1
	134		0x7	0x37	0x1	x	1
	135		0x7	0x36	0x2	x	1
	136		0x7	0x35	0x3	x	1
	137		0x7	0x34	0x4	x	1
	138		0x7	0x33	0x5	x	1
	1			<	Back	Next > Cancel	

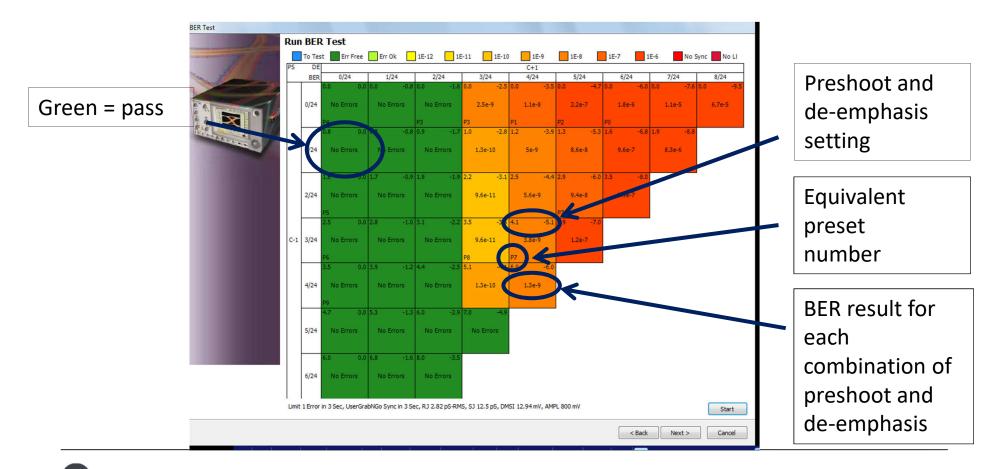
 DUT 1 makes many equalization setting requests

• DUT 2 requests only one equalization preset

Automation Test Options


- Automation software provides two options for testing:
 - 1. "Preset test" uses either negotiated link equalization or user selected preset for test
 - 2. "BER test" provides the option to test a matrix of preshoot and deemphasis settings

Preferences	Start Connect						
	1. Connect to Devices	ices					
Start Connect	BERTScope Address	129.196.37.87	Disconnect				
Help	Scope Address	129,196,37,19	Disconnect				
Calibrations	Sigtest Server Address	129.196.37.17	Disconnect				
DPP Amplitudes	Attempt connection to Connected to: - Sigtest 3.2.3	o Sigtest Server on 129.1	96.37.19:4006				
	Connected to:	o Sigtest Server on 129.1	96.37.19:4006				
Amplitudes Stressed Eye Execute Tests	Connected to:		96.37.19:4006				


Automated TxEQ Matrix Testing

- Automation software "BER test" provides the option to sweep a matrix of pre-shoot and de-emphasis settings
 - Quickly find the range of values that work well with the DUT
 - Ideal for debugging purposes

Automated Equalization Sweep testing

 BER results matrix for preshoot and de-emphasis settings provides an in-depth view of Rx sensitivity to Tx equalization

7 12-JUL-2016

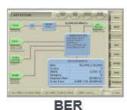
Beyond Compliance: Debugging Rx BER Failures

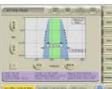
User Challenge:

- Need more than a bit-error rate (BER) number ٠
- Need to understand factors leading to bit error problems in ٠ order to debug issues

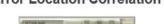
BSX Series BERTScope provides:

- "Scope" functionality that complement those of the Tektronix scopes
- Full-featured and easy to use analysis tools ٠
- Eye diagram for quick diagnosis of synchronization and BER failure issues
- Debug challenging signal integrity problems
 - Error Location Analysis
 - Pattern Capture
 - Jitter Map
 - BER Contour
 - FEC Emulation


Eye Diagram

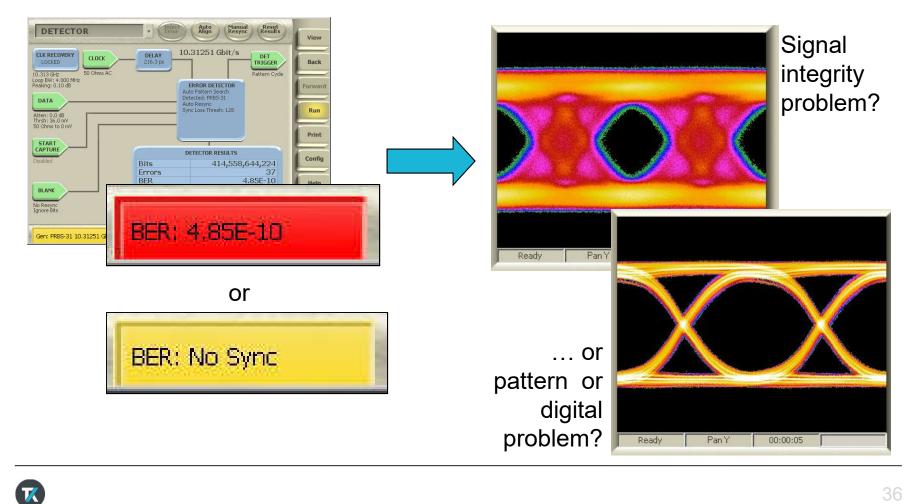


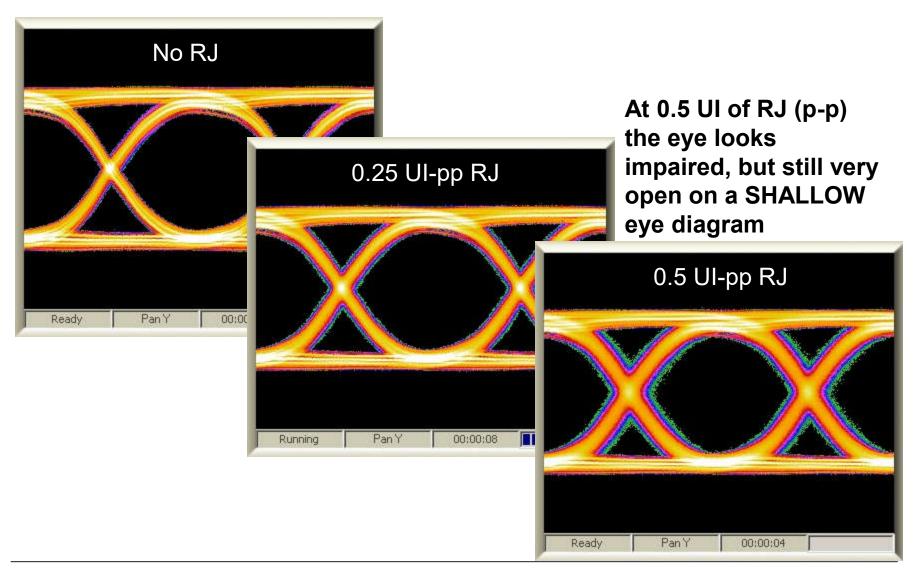
Error Location Correlation



Jitter

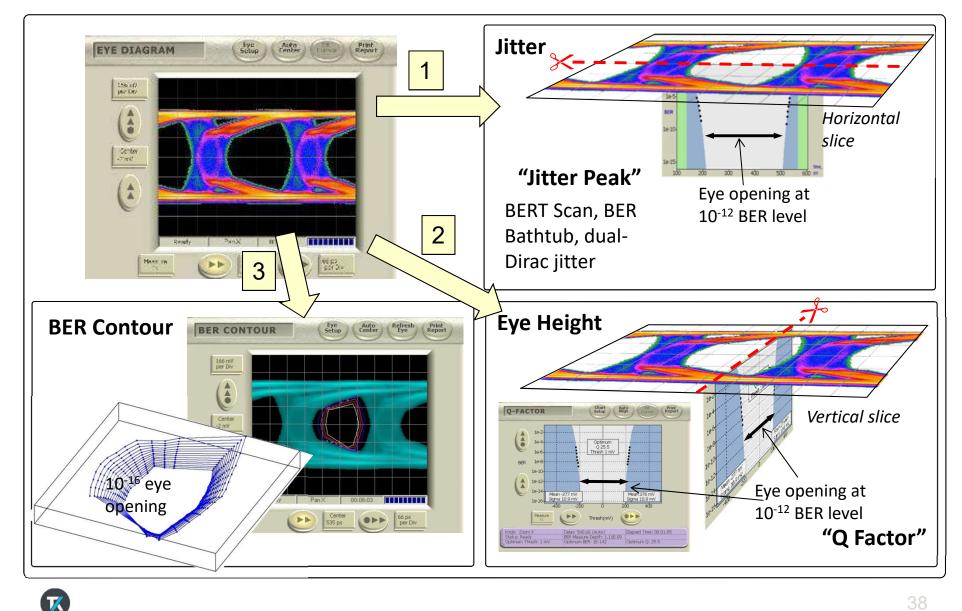
Jitter Tolerance

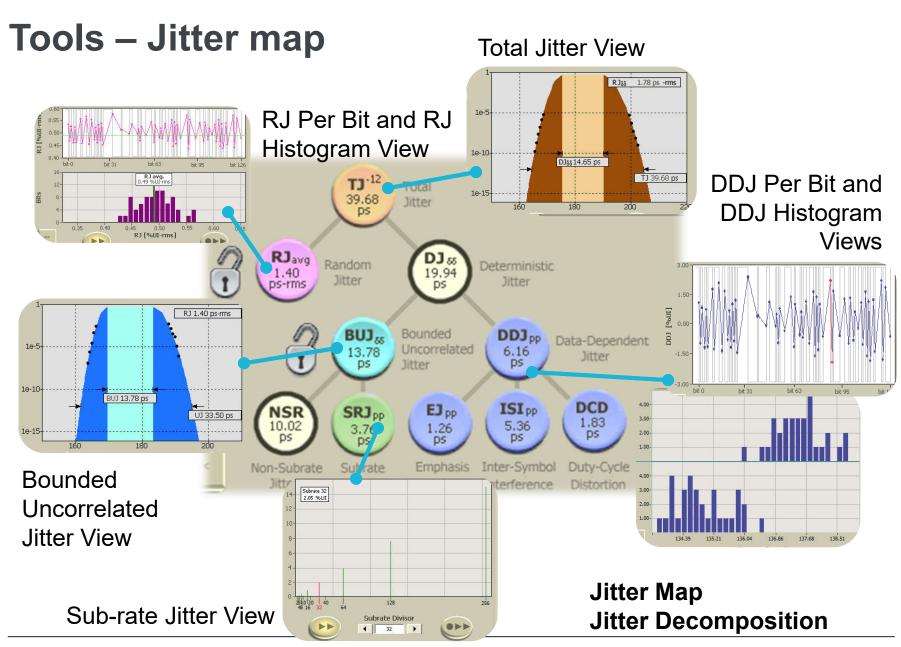


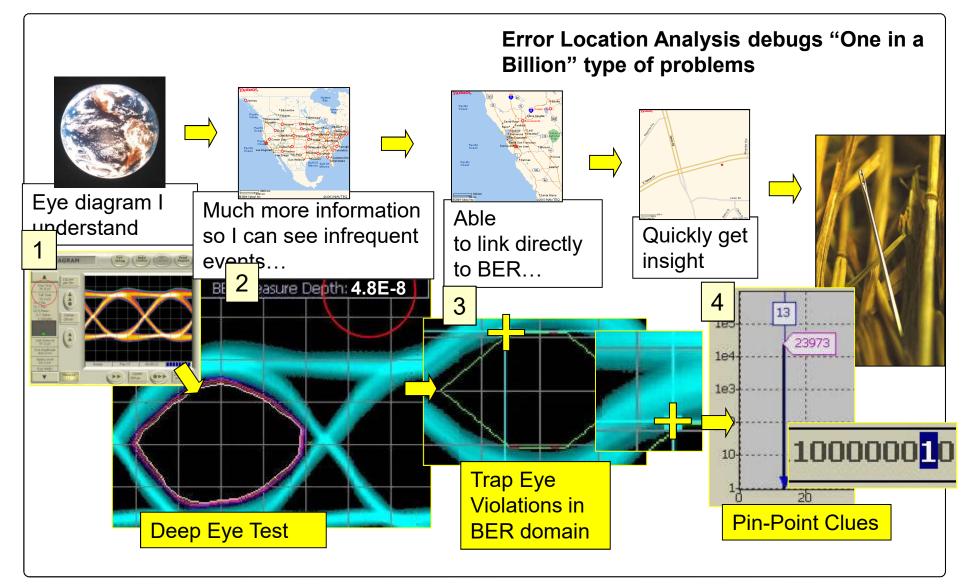


Errors or no sync condition?

Quickly troubleshoot with the eye diagram




Tools - Time-correlated eye diagram


Tools – Bathtub/Q factor/BER Contour

Tools – Error Location Analysis

X

Provide unprecedented support for user defined handshaking for debugging

- Goal: Allow customers to create their own protocol-based patterns and link state traversals via stimulus-response feedback (protocol handshaking)
- Key protocol features support debugging and proprietary standards:
 - Bit-oriented and protocol-oriented memory sequencer
 - Real-time data processing at 32 Gb/s
 - User defined stimulus-response feedback (handshaking)
 - User-defied Detector protocol pattern match -> Generator sequence advancement
 - Detector can match up to 16 user defined blocks.
 - Up to 128 bits/block
 - Stimulus/response trigger output allows cross-triggering of scope
 - Allows user defined handshaking test cases

Decreases Time and Stress of Troubleshooting by Providing Insights

Key benefits:

- Debug complex training issues in protocol link training between DUT and BERT
- Captures and decodes protocol blocks and displays in searchable event table
- Rx Test application supports flexible triggered capture and decode based on state transition and/or protocol messages

Nata Block 00 00 00 10 00	tor	Bit Oriented Sequencer	Protoco	Aware Se	quenzer	Deco	der								Tektronix
202.02.02.02.02.02.02.02.02.02.02.02.02.								_						p.	Personal & Free rolling
Block Type TO3 T11 T21	2017-	2-07_12-0E-36_lane0.dec	Cap	stureflyLer	gt9:2017-1	2-07,12	17-01.ram	Call	starelly Le	ogm2017-	12-07_12-	17-01, Mrs	ell'ipec 🔒	1	
Block Type [0] [1]	ode	d File (read only)													
Randard SHTP Ordered Set AA	_									Synt	bols				
Standard SKTE Ordered Set AA		prock tibe	101	121	121	131	141	:151	161	171	181	191	1101		Decoding Settings
Barls Block 00	-				1967					-					Character State
wite Black 00 10 00															
Introduct 00 00 06 20 00 06 06 06 06 06 06 06 06 06 06 06 00			-												Lone At 0
Data Block 00															
Base Block 00											12.63				
Indefined DD OO			-						_						
Base Block 00			-												
Blanck 00 <th< td=""><td>_</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	_		-												
este Block Det Block	_							1.1974	1.1.4.1				100		
Ready	-								1.5.2	_		-			
Data Block Preset Teit Data Block Configure Loopback Data Block Basic Advanced Block Log Data Block Trigger Mode Trigger After Trigger After Trigger State Resvol F5 or Pre-cursor Resover, Et phase 1 W Viger State Resvol F5 or Cursor Byte 8 Resvol LF or Cursor Byte 8 State Note			1										200.0		
Anta Block Deta Block	-	Prese	Test												
Resolution Resolu	_		oflaure	loor	hack										
ata Block Trigger Mode TSI Trigger StateAndBlockType TSI Trigger Trigger After Byte 5 Trigger State Recovery.Eq phase 1 Recovery.Eq phase 1 State AndBlock Type Iger Ignore DC Balance Par RC			inigure	- root	DOCK										
Intgen Intgen Ist Intgen Intersection StateAndBlockType - Trigger After Ist Intgen Ist Intgen Byte 5 Use Preset RIC EC Byte 7 X XXXX Byte 8 Reeved If an Currer Byte 8 Byte 8 Reeved Byte 9 Reeved Byte 9 Reeved Byte 9 Reeved	lata	Block	Basic Ac	lvanced	Block Lo	ig .									
Biock StateAndBlockType Trigger After Byte 5 Byte 5 Vise Preset RIC EC Byte 5 X XXXX Reaved FS or Pre-cursor Byte 8 Reeved LS or Cursor Byte 8 Reeved LS or Cursor Byte 8 Par RC LF or Cursor	ata i	Block	Trigger M	tode		1	T51 Triag	er							
Plandy Trigger After Byte 5 Use Preat NIC EC Plandy If SI • Byte 5 x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx			StateAn	dBlockT	ppe -										
Ready Itel • Trigger State Byte 7 Reaved Recovery.Eq phase 1 • Ignore DC Balance Byte 8 Rec 0 Par. RC Ignore DC Balance Par. RC	1						Byte 6	2			and the second se				
Trigger State Byte 7 xxx xxx Recovery.Eq phase 1 Byte 8 Reeved LF or Cursor Igrore DC Balance Par RC LF or Cursor		The second					<u> </u>	110							
Trigger State Recovery.Eq phase 1 • State Byte 8 Revol LF or Cursor State Development Byte 8 Par RC LF or Cursor Revol LF or Cursor		ersol.	1631				Byte 2								
Byte 8 XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			Trigger 5	state					u.		<u> </u>				
Ignore DC Balance Bate 0 Par RC LF or Curtor			Recover	y.Eq pha	ne 1		Byte	2			a second s				
Par RC LF or Cursor			W Inno	IN DC R	hnce			X	x	00000	x				
			all ignor				Butte				and the second se				
							Dyse	X	X	X0000	OX				

BERTScope BSX support for Gen5

WE HAVE WHAT CUSTOMERS NEED NOW, AND A CLEAR PATH TO FULL GEN5 SUPPORT

- BSX320 supports Gen5 PHY testing
 - Full pattern generation and stress at 32Gb/s
 - Per Dan F (Intel PIL): "okay" at this stage
- Early Gen5 testing underway in Intel PIL lab
 - Per David B (Intel PIL): BSX320 results for Gen5 "look good"
 - Other vendors "have issues"
- Protocol and physical layer debugging features differentiate the BSX

Compliance Workshop Use Case– PCIe 4.0 Broadcom AIC DUT

Initiate L	oopbad	k		
Loopback Rec		ock Log		
Reg# Preset	Pre-Cursor	Cursor	Post-carsor	vald
2	0x	0x	Dw0	*
		4	1	

LIKELIZIA - Remote Dealing Concentral

 DETECTOR
 DETECTOR

PCI

SIG

Sequencer Loaded for PCIe Loopback Initiation and Debug—PCIe 3.0 -> PCIe 4.0 Iterative requests from the DUT for TXEQ tuning

Special thanks to Broadcom Ft Collins team for their collaboration!

LTSSM Recovery loopback achieved and BER SJ stress test initiated

BERT Debug tools observed protocol traffic to identify handshaking issues

DUT initial preset was modified based on feedback from BERT to facilitate LTSSM Recovery loopback

PCI-SIG Developers Conference 2017

Copyright © 2017 PCI-SIG[®] - All Rights Reserved

Tektronix

PITES ESET

> OSCIN oscour